
www.allitebooks.com

http://www.allitebooks.org

Beginning Oracle SQL

� � �

Lex de Haan
Daniel Fink
Tim Gorman
Inger Jørgensen
Karen Morton

www.allitebooks.com

http://www.allitebooks.org

Beginning Oracle SQL

Copyright © 2009 by Lex de Haan, Daniel Fink, Tim Gorman, Inger Jørgensen, Karen Morton

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-7197-0

ISBN-13 (electronic): 978-1-4302-7196-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewers: Tim Gorman, Daniel Fink
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jim Markham
Copy Editor: Seth Kline
Compositor: Bytheway Publishing Services
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers from this book’s catalog page at
http://www.apress.com. The exact link as of this writing is:
http://apress.com/book/view/1430271970.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

� Contents at a Glance.. iii

� Contents... iv

� About the Authors... xvii

� Acknowledgments ... xix

� Introduction ... xxi

� Chapter 1: Relational Database Systems and Oracle..1

� Chapter 2: Introduction to SQL, AQL*Plus, and SQL Developer.............................25

� Chapter 3: Data Definition, Part I ..71

� Chapter 4: Retrieval: The Basics...83

� Chapter 5: Retrieval: Functions ..117

� Chapter 6: Data Manipulation ...145

� Chapter 7: Data Definition, Part II...163

� Chapter 8: Retrieval: Multiple Tables and Aggregation195

� Chapter 9: Retrieval: Some Advanced Features ...233

� Chapter 10: Views...265

� Chapter 11: Writing and Automating SQL*Plus Scripts287

� Chapter 12: Object-Relational Features..329

� Appendix A: The Seven Case Tables ...349

� Appendix B: Answers to the Exercises ...359

� Index...405

iii

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

Contents

� Contents at a Glance .. iii

� Contents... iv

� About the Authors... xvii

� Acknowledgments ... xix

� Introduction ... xxi

� Chapter 1: Relational Database Systems and Oracle..1

1.1 Information Needs and Information Systems ..1

1.2 Database Design..2

Entities and Attributes .. 2

Generic vs. Specific .. 3

Redundancy.. 4

Consistency, Integrity, and Integrity Constraints.. 5

Data Modeling Approach, Methods, and Techniques ... 6

Semantics... 7

Information Systems Terms Review... 7

1.3 Database Management Systems ...7

DBMS Components... 8

Kernel .. 8

Data Dictionary .. 8

Query Languages... 8

DBMS Tools ... 9

iv

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

Database Applications .. 9

DBMS Terms Review .. 9

1.4 Relational Database Management Systems ..10

1.5 Relational Data Structures...10

Tables, Columns, and Rows ... 11

The Information Principle ... 12

Datatypes.. 12

Keys.. 12

Missing Information and Null Values .. 13

Constraint Checking ... 14

Predicates and Propositions ... 14

Relational Data Structure Terms Review.. 14

1.6 Relational Operators ..15

1.7 How Relational Is My DBMS?...16

1.8 The Oracle Software Environment ...17

1.9 Case Tables ...19

The ERM Diagram of the Case.. 19

Table Descriptions.. 21

� Chapter 2: Introduction to SQL, AQL*Plus, and SQL Developer25

2.1 Overview of SQL ..25

Data Definition .. 26

Data Manipulation and Transactions .. 26

Retrieval ... 27

Security .. 29

Privileges and Roles ... 29

GRANT and REVOKE.. 31

2.2 Basic SQL Concepts and Terminology ...32

Constants (Literals)... 32

v

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

vi

Variables... 34

Operators, Operands, Conditions, and Expressions.. 34

Arithmetic Operators ... 35

The Alphanumeric Operator: Concatenation.. 35

Comparison Operators... 35

Logical Operators .. 36

Expressions ... 36

Functions .. 37

Database Object Naming .. 38

Comments .. 39

Reserved Words.. 39

2.3 Introduction to SQL*Plus..39

Entering Commands ... 40

Using the SQL Buffer .. 41

Using an External Editor ... 42

Using the SQL*Plus Editor .. 43

Using SQL Buffer Line Numbers .. 46

Using the Ellipsis ... 48

SQL*Plus Editor Command Review.. 48

Saving Commands.. 49

Running SQL*Plus Scripts .. 51

Specifying Directory Path Specifications.. 52

Adjusting SQL*Plus Settings... 53

Spooling a SQL*Plus Session.. 56

Describing Database Objects.. 57

Executing Commands from the Operating System... 57

Clearing the Buffer and the Screen .. 57

SQL*Plus Command Review ... 57

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

vii

2.4 Introduction to SQL Developer ...58

Installing and Configuring SQL Developer .. 58

Connecting to a Database... 61

Exploring Objects.. 62

Entering Commands ... 63

Run Statement... 64

Run Script.. 65

Saving Commands to a Script .. 66

Running a Script ... 67

� Chapter 3: Data Definition, Part I ..71

3.1 Schemas and Users ...71

3.2 Table Creation..72

3.3 Datatypes...73

3.4 Commands for Creating the Case Tables ..75

3.5 The Data Dictionary ...77

� Chapter 4: Retrieval: The Basics...83

4.1 Overview of the SELECT Command ...83

4.2 The SELECT Clause ..85

Column Aliases ... 86

The DISTINCT Keyword... 87

Column Expressions ... 87

The DUAL Table ... 88

Null Values in Expressions... 90

4.3 The WHERE Clause ..90

4.4 The ORDER BY Clause..91

4.5 AND, OR, and NOT..94

The OR Operator ... 94

The AND Operator and Operator Precedence Issues .. 95

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

viii

The NOT Operator ... 96

4.6 BETWEEN, IN, and LIKE..98

The BETWEEN Operator .. 98

The IN Operator .. 99

The LIKE Operator... 100

4.7 CASE Expressions ..101

4.8 Subqueries...104

The Joining Condition ... 105

When a Subquery Returns Too Many Values.. 106

Comparison Operators in the Joining Condition ... 107

When a Single-Row Subquery Returns More Than One Row ... 108

4.9 Null Values...109

Null Value Display... 109

The Nature of Null Values ... 109

The IS NULL Operator ... 111

Null Values and the Equality Operator .. 112

Null Value Pitfalls.. 113

4.10 Truth Tables...114

4.11 Exercises ...116

� Chapter 5: Retrieval: Functions ..117

5.1 Overview of Functions ...117

5.2 Arithmetic Functions..119

5.3 Text Functions ...121

5.4 Regular Expressions ..125

Regular Expression Operators and Metasymbols... 126

Regular Expression Function Syntax .. 127

Influencing Matching Behavior.. 127

REGEXP_INSTR Return Value... 128

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

ix

REGEXP_LIKE.. 128

REGEXP_INSTR ... 129

REGEXP_SUBSTR.. 130

REGEXP_REPLACE .. 130

5.5 Date Functions...131

EXTRACT ... 132

ROUND and TRUNC ... 133

MONTHS_BETWEEN and ADD_MONTHS... 133

NEXT_DAY and LAST_DAY.. 134

5.6 General Functions..134

GREATEST and LEAST... 135

NVL ... 136

DECODE .. 136

5.7 Conversion Functions ..137

TO_NUMBER and TO_CHAR.. 138

Conversion Function Formats... 139

Datatype Conversion... 141

CAST ... 141

5.8 Stored Functions..142

5.9 Exercises ...143

� Chapter 6: Data Manipulation ...145

6.1 The INSERT Command...146

Standard INSERT Commands ... 146

INSERT Using Subqueries... 149

6.2 The UPDATE Command..151

6.3 The DELETE Command...154

6.4 The MERGE Command ...157

6.5 Transaction Processing ...159

www.allitebooks.com

http://www.allitebooks.org

� CONTENTS

x

6.6 Locking and Read Consistency..160

Locking ... 160

Read Consistency ... 161

� Chapter 7: Data Definition, Part II ...163

7.1 The CREATE TABLE Command...163

7.2 More on Datatypes...165

Character Datatypes ... 166

Comparison Semantics.. 167

Column Data Interpretation ... 167

Numbers Revisited ... 167

7.3 The ALTER TABLE and RENAME Commands..167

7.4 Constraints...170

Out-of-Line Constraints .. 170

Inline Constraints.. 172

Constraint Definitions in the Data Dictionary.. 173

Case Table Definitions with Constraints... 174

A Solution for Foreign Key References: CREATE SCHEMA.. 176

Deferrable Constraints.. 177

7.5 Indexes ..178

Index Creation... 179

Unique Indexes .. 180

Bitmap Indexes.. 180

Function-Based Indexes .. 180

Index Management... 181

7.6 Performance Monitoring with SQL Developer AUTOTRACE......................................182

7.7 Sequences ...185

7.8 Synonyms ..186

7.9 The CURRENT_SCHEMA Setting ..188

� CONTENTS

xi

7.10 The DROP TABLE Command ..189

7.11 The TRUNCATE Command..191

7.12 The COMMENT Command..191

7.13 Exercises ...193

� Chapter 8: Retrieval: Multiple Tables and Aggregation195

8.1 Tuple Variables ..195

8.2 Joins ..197

Cartesian Products ... 198

Equijoins ... 198

Non-equijoins ... 199

Joins of Three or More Tables.. 200

Self-Joins ... 201

8.3 The JOIN Clause...202

Natural Joins .. 203

Equijoins on Columns with the Same Name... 204

8.4 Outer Joins ..205

Old Oracle-Specific Outer Join Syntax.. 206

New Outer Join Syntax ... 207

Outer Joins and Performance... 208

8.5 The GROUP BY Component ..208

Multiple-Column Grouping.. 210

GROUP BY and Null Values ... 210

8.6 Group Functions...211

Group Functions and Duplicate Values... 212

Group Functions and Null Values.. 213

Grouping the Results of a Join ... 214

The COUNT(*) Function ... 214

Valid SELECT and GROUP BY Clause Combinations.. 216

� CONTENTS

xii

8.7 The HAVING Clause ..217

The Difference Between WHERE and HAVING .. 218

HAVING Clauses Without Group Functions.. 218

A Classic SQL Mistake .. 219

Grouping on Additional Columns .. 220

8.8 Advanced GROUP BY Features...222

GROUP BY ROLLUP.. 222

GROUP BY CUBE.. 223

CUBE, ROLLUP, and Null Values.. 224

The GROUPING Function .. 224

The GROUPING_ID Function... 225

8.9 Partitioned Outer Joins ..226

8.10 Set Operators...228

8.11 Exercises ...231

� Chapter 9: Retrieval: Some Advanced Features..233

9.1 Subqueries Continued ...233

The ANY and ALL Operators.. 234

Defining ANY and ALL.. 235

Rewriting SQL Statements Containing ANY and ALL ... 236

Correlated Subqueries.. 237

The EXISTS Operator .. 238

Subqueries Following an EXISTS Operator .. 239

EXISTS, IN, or JOIN? .. 239

NULLS with NOT EXISTS and NOT IN ... 242

9.2 Subqueries in the SELECT Clause..243

9.3 Subqueries in the FROM Clause ..244

9.4 The WITH Clause..245

� CONTENTS

xiii

9.5 Hierarchical Queries ..247

START WITH and CONNECT BY ... 248

LEVEL, CONNECT_BY_ISCYCLE, and CONNECT_BY_ISLEAF ... 249

CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH .. 250

Hierarchical Query Result Sorting .. 251

9.6 Analytical Functions...252

Partitions .. 254

Function Processing ... 257

9.7 Flashback Features ...259

AS OF.. 260

VERSIONS BETWEEN... 262

FLASHBACK TABLE ... 262

9.8 Exercises ...264

� Chapter 10: Views...265

10.1 What Are Views?..265

10.2 View Creation...266

Creating a View from a Query... 267

Getting Information About Views from the Data Dictionary .. 269

Replacing and Dropping Views... 271

10.3 What Can You Do with Views?...271

Simplifying Data Retrieval .. 271

Maintaining Logical Data Independence .. 273

Implementing Data Security ... 274

10.4 Data Manipulation via Views ...274

Updatable Join Views ... 276

Nonupdatable Views... 277

The WITH CHECK OPTION Clause.. 278

Disappearing Updated Rows ... 278

� CONTENTS

xiv

Inserting Invisible Rows .. 279

Preventing These Two Scenarios .. 280

Constraint Checking .. 280

10.5 Data Manipulation via Inline Views..281

10.6 Views and Performance...282

10.7 Materialized Views...283

Properties of Materialized Views.. 284

Query Rewrite... 284

10.8 Exercises ...286

� Chapter 11: Writing and Automating SQL*Plus Scripts287

11.1 SQL*Plus Variables ..288

SQL*Plus Substitution Variables ... 288

SQL*Plus User-Defined Variables ... 290

Implicit SQL*Plus User-Defined Variables ... 291

User-Friendly Prompting ... 292

SQL*Plus System Variables .. 293

11.2 Bind Variables..298

Bind Variable Declaration ... 299

Bind Variables in SQL Statements .. 300

11.3 SQL*Plus Scripts..301

Script Execution.. 301

Script Parameters... 302

SQL*Plus Commands in Scripts.. 304

The login.sql Script... 305

11.4 Report Generation with SQL*Plus ..306

The SQL*Plus COLUMN Command.. 307

The SQL*Plus TTITLE and BTITLE Commands... 311

The SQL*Plus BREAK Command ... 312

� CONTENTS

xv

The SQL*Plus COMPUTE Command .. 315

The Finishing Touch: SPOOL... 317

11.5 HTML in SQL*Plus ..318

HTML in SQL*Plus... 318

11.6 Building SQL*Plus Scripts for Automation ...321

What Is a SQL*Plus Script?... 321

Capturing and Using Input Parameter Values... 322

Passing Data Values from One SQL Statement to Another ... 323

Mechanism 1: The NEW_VALUE Clause... 323

Mechanism 2: Bind Variables .. 324

Handling Error Conditions... 325

11.7 Exercises ...326

� Chapter 12: Object-Relational Features..329

12.1 More Datatypes..329

Collection Datatypes... 330

Methods.. 330

12.2 Varrays...331

Creating the Array... 331

Populating the Array with Values ... 333

Querying Array Columns... 334

12.3 Nested Tables ..336

Creating Table Types .. 336

Creating the Nested Table .. 336

Populating the Nested Table... 337

Querying the Nested Table ... 338

12.4 User-Defined Types ...339

Creating User-Defined Types.. 339

Showing More Information with DESCRIBE .. 340

� CONTENTS

xvi

12.5 Multiset Operators ...341

Which SQL Multiset Operators Are Available?.. 341

Preparing for the Examples .. 342

Using IS NOT EMPTY and CARDINALITY.. 343

Using POWERMULTISET.. 344

Using MULTISET UNION .. 345

Converting Arrays into Nested Tables .. 346

12.6 Exercises ...346

� Appendix A: The Seven Case Tables ...349

ERM Diagram...349

Table Structure Descriptions ...350

Columns and Foreign Key Constraints...351

Contents of the Seven Tables ..352

Hierarchical Employees Overview ...357

Course Offerings Overview ..357

� Appendix B: Answers to the Exercises ...359

Chapter 4 Exercises...359

Chapter 5 Exercises...369

Chapter 7 Exercises...374

Chapter 8 Exercises...376

Chapter 9 Exercises...386

Chapter 10 Exercises...395

Chapter 11 Exercises...397

Chapter 12 Exercises...401

� Index ...405

 About the Author

� Lex de Haan studied applied mathematics at the Technical University in Delft,
The Netherlands. His experience with Oracle goes back to the mid-1980s, version
4. He worked for Oracle Corporation from 1990 until 2004, in various education-
related roles, ending up in Server Technologies (product development) as senior
curriculum manager for the advanced DBA curriculum. In that role, he was
involved in the development of Oracle9i Database and Oracle Databsae 10g. In
March 2004, he decided to go independent and founded Natural Join B.V. In 1999,
he became involved in the ISO SQL language standardization process, as a
member of the Dutch national body. Lex passed away on February 1, 2006.

� Daniel Fink has been working with Oracle since 1995, starting as a
developer/dba on Oracle7 Parallel Server on OpenVMS, and then moving to
database administration. Currently working as a consultant, he focuses on
diagnosis, optimization, and data recovery. He is also a highly regarded trainer
and presenter, speaking at user group conferences in the United States and
Europe. When not working with technology, he enjoys the mountains of Colorado
on foot, on skis, or from the seat of a bicycle.

� Tim Gorman has worked in IT with relational databases since 1984, as an Oracle
application developer since 1990, and as an Oracle database administrator since
1993. He is an independent consultant (http://www.EvDBT.com) specializing in
data warehousing, performance tuning, database administration (particularly
availability). He has been an active member of the Rocky Mountain Oracle Users
Group (http://www.rmoug.org). He has co-authored three previous books and
taught classes and presented at conferences all over the US, Canada, Latin
America, Europe, and Asia. Tim lives in Colorado with his wife Lori and their four
teenage children. He still can't believe that he gets paid for doing this and is
officially one very happy guy.

xvii

� ABOUT THE AUTHOR

xviii

� After a Languages Master degree (English and French) Inger Jørgensen started
teaching SQL and PL/SQL as well as database administration from Oracle version
6 onwards with a five-year period in between of teaching developers Forms,
Reports, and Graphics. Inger spent 18 years at Oracle Corporation, and is presently
at Oracle partner Miracle in Denmark.

� Karen Morton is an Oracle performance optimization specialist with nearly 20
years experience working with the Oracle database. She works with companies
around the world teaching application optimization in both classroom settings
and shoulder-to-shoulder consulting engagements. She is a frequent speaker at
conferences and user groups, an Oracle ACE, and a member of the OakTable
network. She blogs at http://karenmorton.blogspot.com.

Acknowledgments

I want to thank many friends who contributed to the quality of this book by reviewing it and providing
their feedback. Cary Millsap and Jocke Treugut, two good friends and members of the OakTable
network, were my main reviewers. Cary helped me with his constant focus on “doing things right” from
the very beginning, and Jocke helped me find the right balance between theory and practice. Martin
Jensen, one of my good old friends inside Oracle and an Oakie as well, provided precisely the feedback I
needed from his impressive Oracle consulting background. Stephen Cannan, my colleague in the Dutch
national body for the SQL Standardization and the convenor of the international ISO / IEC / JTC1 / SC32
/ WG3 committee, commented on my draft chapters based on his vast experience in the SQL
standardization area.

Kristina Youso, a former colleague and good friend from my years in Global Curriculum
Development in Oracle and one of the best content editors I have ever worked with, was so kind to check
and improve my English language.

Last, but not least, I must mention the professionalism and enthusiasm of all the Apress folks
involved in the production of this book: Tony Davis, Beckie Stones, Marilyn Smith, and Kelly Winquist.
Thanks folks . . .

My two daughters are too old to be mentioned here, the cat was not involved in any way, and I leave
it up to Mogens Nørgaard to say something nice about my wife, Juliette.

Lex de Haan from first edition

I am honored to be part of the team to update this book and maintain Lex's legacy. Thank you

Juliette for your support in this project and for my last visit with Lex. Lex was a professional colleague
and friend. I cherish the all too brief times we spent together at conferences and our email
conversations. I want to thank Jonathan Gennick and James Markham with Apress who worked very
hard to make this book possible and were very tolerant and understanding of the trials and tribulations
of a first time author. Your patience and perseverance were invaluable. This project would not have been
possible without Inger, Karen and Tim. Thank you for your time and energy. The discussions, reviews,
last minute emails have been so very important and are greatly appreciated. Over the years, many
people have supported, enlightened, educated and challenged me. Thank you to Tim, Vincent, Kirti,
Rachel, Mogens, Cary, Jonathan, Carol, Craig, Lex, Kurt, Robyn, and fellow members of the Oak Table.
Thanks to BD for encouraging me to make the leap to Oracle.

Family and friends make everything possible. Thanks Mom and Dad for all you have done and
continue to do. The constant support of E, Janet, Sujeeva, and Roberta is invaluable. Thank you Beverly
for all your support, understanding, and love over these months.

Daniel Fink

xix

www.allitebooks.com

http://www.allitebooks.org

� ACKNOWLEDGMENTS

xx

I would like to acknowledge his gratitude to Gary Dodge my friend and mentor, Mogens Norgaard
for opportunity and motivation, Jonathan Gennick for patience and wisdom, Abdul Ebadi for
encouragement and inspiration, and Lori Shine for hope, love, spirit, and fun. There are so many more,
family, friends and colleagues alike, and I love the world in which I live.

Tim Gorman

I would like to thank Lex for his friendship and his great ability to teach in a clear, awsome,

pedagogical way.

Inger Jørgensen

The first, and perhaps most important, acknowledgement I make goes to Lex de Haan for creating the
original version of this book. I am very honored to follow in his footsteps and to enliven his work.

There have been so many enthusiastic people in the Oracle community that I've met in classes,
consulting engagements, and conferences over the last 20 years. These connections are my favorite part
of what I do. It is my hope that this book makes a positive contribution back to the community that has
given me so much.

Finally, thanks to my family for all the support and encouragement not only to complete this work,
but every single day. It's coming home to you that makes everything complete.

Karen Morton

� INTRODUCTION

Introduction

This book was born from a translation of a book originally written by Lex de Haan in Dutch. That book
was first published in 1993, and went through several revisions in its native Dutch before Lex decided to
produce an English version. Apress published that English version in 2005 under the title “Mastering
Oracle SQL and SQL*Plus”. The book has since earned respect as excellent, accurate, and concise
tutorial on Oracle’s implementation of SQL.

While SQL is a fairly stable language, there have been changes to Oracle’s implementation of it over
the years. The book you are holding now is a revision of Lex’s original, English-language work. The book
has been revised to cover new developments in Oracle SQL since 2005, especially those in Oracle
Database 11g Release 1 and Release 2. The book has also been given the title “Beginning Oracle SQL”.
The new title better positions the book in Apress’s line, better refects the content, fits better with
branding and marketing efforts, and marks the book as a foundational title that Apress intends to
continue revising and publishing in the long term.

About this Book
This is not a book about advanced SQL. It is not a book about the Oracle optimizer and diagnostic tools.
And it is not a book about relational calculus, predicate logic, or set theory. This book is a SQL primer. It
is meant to help you learn Oracle SQL by yourself. It is ideal for self-study, but it can also be used as a
guide for SQL workshops and instructor-led classroom training.

This is a practical book; therefore, you need access to an Oracle environment for hands-on
exercises. All the software that you need to install Oracle Database on either Windows or Linux for
learning purposes is available free of charge from the Oracle Technology Network (OTN). Begin your
journey with a visit to the OTN website at:

http://www.oracle.com/technology/index.html
From the OTN home page, you can navigate to product information, to documentation and manual

sets, and to free downloads that you can install on your own PC for learning purposes.
This edition of the book is current with Oracle Database 11g Release 2. However, Oracle SQL has

been reasonable stable over the years. All the examples should also run under Release 1. And most will
still run under Oracle Database 10g, under Oracle Database 9i, and even under Oracle Database 8i, if
you’re running software that old. Of course, as you go further back in release-time, you will find more
syntax that is not supported in each successively older release. Oracle Corporation does tend to add a
few new SQL features with each new release of their database product.

Oracle Corporation has shown great respect for SQL standards over the past decade. We agree with
supporting standards, and we follow the ANSI/ISO standard SQL syntax as much as possible in this
book. Only in cases of useful, Oracle-specific SQL extensions do we deviate from the international
standard. Therefore, most SQL examples given in this book are probably also valid for other database
maagement system (DBMS) implementations supporting the SQL language.

xxi

� INTRODUCTION

xxii

1.

SQL statements discussed in this book are explained with concrete examples. We focus on th emain
points, avoiding peripheral and arcane side-issues as much as possible. The examples are presented
clearly in a listing format, as in the example shown here in Listing I-1.

Listing I-1. A SQL SELECT Statement

SELECT ‘Hello world!’
FROM dual;

One difference between this edition and its predecessor is that we omit the “SQL>” prompt from
most of our examples. That prompt comes from SQL*Plus, the command-line interface that old-guard
database administrators and developers have used for years. We now omit SQL*Plus promts from all
examples that are not specific to SQL*Plus. We do that out of respect for the growing use of graphical
interfaces such as Oracle SQL Developer.

This book does not intend (nor pretend) to be complete; the SQL language is too voluminous and
the Oracle environment is much too complex. Oracle’s SQL referenc e manual, named Oracle SQL
Reference, comes in at just over 1500 pages for the Oracle Database 11g Release 2 edition. Moreover, the
current ISO SQL standard documentation has grown to a size that is simply not feasible anymore to print
on paper.

The main objective of this book is the combination of usability and affordability. The official Oracle
documentation offers detailed information in case you need it. Therefore, it is a good idea to have the
Oracle manuals available while working through the examples and exercises in this book. The Oracle
documentation is available online from the OTN website mentioned earlier in this introduction. You can
access that documentation in html from, or you can download PDF copies of selected manuals.

The focus of this book is using SQL for data retrieval. Data definition and data manipulation are
covered in less detail. Security, authorization, and database administration are mentioned only for the
sake of completeness in the “Overview of SQL” section of Chapter 2.

Throughout the book, we use a case consisting of seven tables. These seven tables contain
information about employees, departments, and courses. As Chris Date, a well-known guru in the
professional database world, said during one of his seminars, “There are only three databases:
employees and departments, orders and line items, and suppliers and shipments.”

The amount of data (i.e., the cardinality) in the case tables is deliberately kept low. This enables you
to check the results of your SQL commands manually, which is nice while you’re learning to master the
SQL language. In general, checking your results manually is impossible in real information systems due
to the volume of data in such systems.

It is not the data volume or query response time that matters in this book. What’s important is the
database structure complexity and SQL statement correctness. After all, it does no good for a statement
to be fast, or to perform well, if all it does in the end is produce incorrect results. Accuracy first! That’s
true in many aspects of life, including in SQL.

About the Chapters of this Book
Chapter 1 provides a concise introduction to the theoretical background of information systems and
some popular database terminology, and then continues with a global overview of the Oracle software
and an introduction to the seven case tables. It is an important, foundational chapter that will help you
get the most from the rest of the book.

Chapter 2 starts with a high-level overview of the SQL language. We follow that with an introduction
to SQL*Plus and SQL Developer. The first – SQL*Plus – is a command-line tool that you can use to send a
SQL statement to the database and get results back. Many database administrators use SQL*Plus
routinely, and you can rely upon it to be present in any Oracle Database installation. SQL Developer is

� INTRODUCTION

xxiii

also a tool for testing and executing SQL. It comes with a graphical user interface, and it is a tool that has
gained much ground and momentum with developers.

Data definition is covered in two nonconsecutive chapters: Chapter 3 and Chapter 7. This is done to
allow you to start with SQL retrieval as soon as possible. Therefore, Chapter 3 covers only the most basic
data-definition concepts (tables, datatypes, and the data dictionary).

Retrieval is also spread over multiple chapters—four chapters, to be precise. Chapter 4 focuses on
the SELECT, WHERE, and ORDER BY clauses of the SELECT statement. The most important SQL functions are
covered in Chapter 5, which also covers null values and subqueries. In Chapter 8, we start accessing
multiple tables at the same time (joining tables) and aggregating query results; in other words, the FROM,
the GROUP BY, and the HAVING clauses get our attention in that chapter. To finish the coverage of data
retrieval with SQL, Chapter 9 revisits subqueries to show some more advanced subquery constructs.
That chapter also introduces windows and analytical functions, hierarchical queries, and flashback
features.

Chapter 6 discusses data manipulation with SQL. The commands INSERT, UPDATE, DELETE, and
MERGE are introduced. This chapter also pays attention to some topics related to data manipulation:
transaction processing, read consistency, and locking.

In Chapter 7, we revisit data definition, to drill down into constraints, indexes, sequences, and
performance. Synonyms are explained in the same chapter. Chapters 8 and 9 continue coverage of data
retrieval with SQL.

Chapter 10 introduces views. What are views, when should you use them, and what are their
restrictions? This chapter explores the possibilities of data manipulation via views, discusses views and
performance, and introduces materialized views.

Chapter 11 is about automation. SQL statements can be long, and sometimes you want to execute
several in succession. Chapter 11 shows you how to develop automated scripts that you can run via
SQL*Plus. Many, many Oracle databases are kept alive and healthy by automated SQL*Plus scripts
written by savvy database administrators.

Oracle is an object-relational database management system. Since Oracle Database 8, many object-
oriented features have been added to the SQL language. As an introduction to these features, Chapter 12
provides a high-level overview of user-defined datatypes, arrays, nested tables, and multiset operators.

Finally, the book ends with two appendixes. Appendix A at the end of this book provides a detailed
look into the example tables used in this book’s examples. Appendix B gives the exercise solutions.

About the Case Tables
Chapter 1 describes the case tables used in the book’s examples. Appendix A goes into even more detail,
should you want it. The book’s catalog page on the Apress.com website contains a link to a SQL*Plus
script that you can use to create and populate the example tables. The direct link to that page is:
http://apress.com/book/view/1430271970. When you get there, look on the left side of the page for a
section entitled “Book Resources”. You should find a “Source Code” link within that section. Click on
that link to download the script.

C H A P T E R 1

� � �

Relational Database Systems
and Oracle

The focus of this book is writing SQL in Oracle, which is a relational database management system. This
first chapter provides a brief introduction to relational database systems in general, followed by an
introduction to the Oracle software environment. The main objective of this chapter is to help you find
your way in the relational database jungle and to get acquainted with the most important database
terminology.

The first three sections discuss the main reasons for automating information systems using
databases, what needs to be done to design and build relational database systems, and the various
components of a relational database management system. The following sections go into more depth
about the theoretical foundation of relational database management systems.

This chapter also gives a brief overview of the Oracle software environment: the components of such
an environment, the characteristics of those components, and what can you do with those components.

The last section of this chapter introduces seven sample tables, which are used in the examples and
exercises throughout this book to help you develop your SQL skills. In order to be able to formulate and
execute the correct SQL statements, you’ll need to understand the structures and relationships of these
tables.

This chapter does not cover any object-relational database features. Chapter 12 discusses the
various Oracle features in that area.

1.1 Information Needs and Information Systems
Organizations have business objectives. In order to realize those business objectives, many decisions
must be made on a daily basis. Typically, a lot of information is needed to make the right decisions;
however, this information is not always available in the appropriate format. Therefore, organizations
need formal systems that will allow them to produce the required information, in the right format, at the
right time. Such systems are called information systems. An information system is a simplified reflection
(a model) of the real world within the organization.

Information systems don’t necessarily need to be automated—the data might reside in card files,
cabinets, or other physical storage mechanisms. This data can be converted into the desired information
using certain procedures or actions. In general, there are two main reasons to automate information
systems:

� Complexity: The data structures or the data processing procedures become too
complicated.

� Volume: The volume of the data to be administered becomes too large.

1

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

If an organization decides to automate an information system because of complexity or volume (or
both), it typically will need to use some database technology.

The main advantages of using database technology are the following:

� Accessibility: Ad hoc data-retrieval functionality, data-entry and data-reporting
facilities, and concurrency handling in a multiuser environment

� Availability: Recovery facilities in case of system crashes and human errors

� Security: Data access control, privileges, and auditing

� Manageability: Utilities to efficiently manage large volumes of data

When specifying or modeling information needs, it is a good idea to maintain a clear separation
between information and application. In other words, we separate the following two aspects:

� What: The information content needed. This is the logical level.

� How: The desired format of the information, the way that the results can be
derived from the data stored in the information system, the minimum
performance requirements, and so on. This is the physical level.

Database systems such as Oracle enable us to maintain this separation between the “what” and the
“how” aspects, allowing us to concentrate on the first one. This is because their implementation is based
on the relational model. The relational model is explained later in this chapter, in Sections 1.4 through
1.7.

1.2 Database Design
One of the problems with using traditional third-generation programming languages (such as COBOL,
Pascal, Fortran, and C) is the ongoing maintenance of existing code, because these languages don’t
separate the “what” and the “how” aspects of information needs. That’s why programmers using those
languages sometimes spend more than 75% of their precious time on maintenance of existing programs,
leaving little time for them to build new programs.

When using database technology, organizations usually need many database applications to
process the data residing in the database. These database applications are typically developed using
fourth- or fifth-generation application development environments, which significantly enhance
productivity by enabling users to develop database applications faster while producing applications with
lower maintenance costs. However, in order to be successful using these fourth- and fifth-generation
application development tools, developers must start thinking about the structure of their data first.

It is very important to spend enough time on designing the data model before you start coding your
applications. Data model mistakes discovered in a later stage, when the system is already in production,
are very difficult and expensive to fix.

Entities and Attributes
In a database, we store facts about certain objects. In database jargon, such objects are commonly
referred to as entities. For each entity, we are typically interested in a set of observable and relevant
properties, commonly referred to as attributes.

2

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

When designing a data model for your information system, you begin with two questions:

1. Which entities are relevant for the information system?

2. Which attributes are relevant for each entity, and which values are allowed for
those attributes?

We’ll add a third question to this list before the end of this chapter, to make the list complete.
For example, consider a company in the information technology training business. Examples of

relevant entities for the information system of this company could be course attendee, classroom,
instructor, registration, confirmation, invoice, course, and so on. An example of a partial list of relevant
attributes for the entity ATTENDEE could be the following:

� Registration number

� Name

� Address

� City

� Date of birth

� Blood group

� Age

� Gender

For the COURSE entity, the attribute list could look as follows:

� Title

� Duration (in days)

� Price

� Frequency

� Maximum number of attendees

� Note There are many different terminology conventions for entities and attributes, such as objects, object types,
types, object occurrences, and so on. The terminology itself is not important, but once you have made a choice,
you should use it consistently.

Generic vs. Specific
The difference between generic versus specific is very important in database design. For example,
common words in natural languages such as book and course have both generic and specific meanings.
In spoken language, the precise meaning of these words is normally obvious from the context in which
they are used.

3

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

When designing data models, you must be very careful about the distinction between generic and
specific meanings of the same word. For example, a course has a title and a duration (generic), while a
specific course offering has a location, a certain number of attendees, and an instructor. A specific book
on the shelf might have your name and purchase date on the cover page, and it might be full of your
personal annotations. A generic book has a title, an author, a publisher, and an ISBN code. This means
that you should be careful when using words like course and book for database entities, because they
could be confusing and suggest the wrong meaning.

Moreover, we must maintain a clear separation between an entity itself at the generic level and a
specific occurrence of that entity. Along the same lines, there is a difference between an entity attribute
(at the generic level) and a specific attribute value for a particular entity occurrence.

Redundancy
There are two types of data: base data and derivable data. Base data is data that cannot be derived in any
way from other data residing in the information system. It is crucial that base data is stored in the
database. Derivable data can be deduced (for example, with a formula) from other data. For example, if
we store both the age and the date of birth of each course attendee in our database, these two attributes
are mutually derivable—assuming that the current date is available at any moment.

Actually, every question issued against a database results in derived data. In other words, it is both
undesirable and impossible to store all derivable data in an information system. Storage of derivable
data is referred to as redundancy. Another way of defining redundancy is storage of the same data more
than once.

Sometimes, it makes sense to store redundant data in a database; for example, in cases where
response time is crucial and in cases where repeated computation or derivation of the desired data
would be too time-consuming. But typically, storage of redundant data in a database should be avoided.
First of all, it is a waste of storage capacity. However, that’s not the biggest problem, since gigabytes of
disk capacity can be bought for relatively low prices these days. The challenge with redundant data
storage lies in its ongoing maintenance.

With redundant data in your database, it is difficult to process data manipulation correctly under all
circumstances. In case something goes wrong, you could end up with an information system containing
internal contradictions. In other words, you would have inconsistent data. Therefore, redundancy in an
information system results in ongoing consistency problems.

When considering the storage of redundant data in an information system, it is important to
distinguish two types of information systems:

� Online transaction processing (OLTP) systems, which typically have continuous
data changes and high volume

� Decision support (DSS) systems, which are mainly, or even exclusively, used for
data retrieval and reporting, and are loaded or refreshed at certain frequencies
with data from OLTP systems

In DSS systems, it is common practice to store a lot of redundant data to improve system response
times. Retrieval of stored data is typically faster than data derivation, and the risk of inconsistency,
although present for load and update of data, is less likely because most DSS systems are often read-only
from the end user’s perspective.

4

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Consistency, Integrity, and Integrity Constraints
Obviously, consistency is a first requirement for any information system, ensuring that you can retrieve
reliable information from that system. In other words, you don’t want any contradictions in your
information system.

For example, suppose we derive the following information from our training business information
system:

� Attendee 6749 was born on February 13, 2093.

� The same attendee 6749 appears to have gender Z.

� There is another, different attendee with the same number 6749.

� We see a course registration for attendee 8462, but this number does not appear in
the administration records where we maintain a list of all persons.

In none of the above four cases is the consistency at stake; the information system is unambiguous
in its statements. Nevertheless, there is something wrong because these statements do not conform to
common sense.

This brings us to the second requirement for an information system: data integrity. We would
consider it more in accordance with our perception of reality if the following were true of our
information system:

� For any course attendee, the date of birth does not lie in the future.

� The gender attribute for any person has the value M or F.

� Every course attendee (or person in general) has a unique number.

� We have registration information only for existing attendees—that is, attendees
known to the information system.

These rules concerning database contents are called constraints. You should translate all your
business rules into formal integrity constraints. The third example—a unique number for each person—
is a primary key constraint, and it implements entity integrity. The fourth example—information for only
persons known to the system—is a foreign key constraint, implementing referential integrity. We will
revisit these concepts later in this chapter, in Section 1.5.

Constraints are often classified based on the lowest level at which they can be checked. The
following are four constraint types, each illustrated with an example:

� Attribute constraints: Checks attributes; for example, “Gender must be M or F.”

� Row constraints: Checks at the row level; for example, “For salesmen, commission
is a mandatory attribute.”

� Table constraints: Checks at the table level; for example, “Each employee has a
unique e-mail address.”

� Database constraints: Checks at the database level; for example, “Each employee
works for an existing department.”

In Chapter 7, we’ll revisit integrity constraints to see how you can formally specify them in the SQL
language.

5

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

At the beginning of this section, you learned that information needs can be formalized by
identifying which entities are relevant for the information system, and then deciding which attributes
are relevant for each entity. Now we can add a third step to the information analysis list of steps to
produce a formal data model:

1. Which entities are relevant for the information system?

2. Which attributes are relevant for each entity?

3. Which integrity constraints should be enforced by the system?

Data Modeling Approach, Methods, and Techniques
Designing appropriate data models is not a sinecure, and it is typically a task for IT specialists. On the
other hand, it is almost impossible to design data models without the active participation of the future
end users of the system. End users usually have the most expertise in their professional area, and they
are also involved in the final system acceptance tests.

Over the years, many methods have been developed to support the system development process
itself, to generate system documentation, to communicate with project participants, and to manage
projects to control time and costs. Traditional methods typically show a strict phasing of the
development process and a description of what needs to be done in which order. That’s why these
methods are also referred to as waterfall methods. Roughly formulated, these methods distinguish the
following four phases in the system development process:

1. Analysis: Describing the information needs and determining the information
system boundaries

2. Logical design: Getting answers to the three questions about entities,
attributes, and constraints, which were presented in the previous section

3. Physical design: Translating the logical design into a real database structure

4. Build phase: Building database applications

Within the development methods, you can use various techniques to support your activities. For
example, you can use diagram techniques to represent data models graphically. Some well-known
examples of such diagram techniques are Entity Relationship Modeling (ERM) and Unified Modeling
Language (UML) In the last section of this chapter, which introduces the sample tables used throughout
this book, you will see an ERM diagram that corresponds with those tables.

Another example of a well-known technique is normalization, which allows you to remove
redundancy from a database design by following some strict rules.

Prototyping is also a quite popular technique. Using prototyping, you produce “quick and dirty”
pieces of functionality to simulate parts of a system, with the intention of evoking reactions from the end
users. This might result in time-savings during the analysis phase of the development process, and more
important, better-quality results, thus increasing the probability of system acceptance at the end of the
development process.

Rapid application development (RAD) is also a well-known term associated with data modeling.
Instead of the waterfall approach described earlier, you employ an iterative approach.

Some methods and techniques are supported by corresponding computer programs, which are
referred to as computer-aided systems engineering (CASE) tools. Various vendors offer complete and
integral support for system development, from analysis to system generation, while others provide basic
support for database design even though their products are general-purpose drawing tools (Microsoft
Visio is an example).

6

 www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Semantics
If you want to use information systems correctly, you must be aware of the semantics (the meaning of
things) of the underlying data model. A careful choice for table names and column names is a good
starting point, followed by applying those names as consistently as possible. For example, the attribute
“address” can have many different meanings: home address, work address, mailing address, and so on.
The meaning of attributes that might lead to this type of confusion can be stored explicitly in an
additional semantic explanation to the data model. Although such a semantic explanation is not part of
the formal data model itself, you can store it in a data dictionary—a term explained in the next section.

Information Systems Terms Review
In this section, the following terms were introduced:

� Entities and attributes

� Generic versus specific

� Occurrences and attribute values

� Base data and derivable data

� Redundancy and consistency

� Integrity and constraints

� Data modeling

� Methods and techniques

� Logical and physical design

� Normalization

� Prototyping and RAD

� CASE tools

� Semantics

1.3 Database Management Systems
The preceding two sections defined the formal concept of an information system. You learned that if an
organization decides to automate an information system, it typically uses some database technology.
The term database can be defined as follows:

� Definition A database is a set of data, needed to derive the desired information from an information system and
maintained by a separate software program.

7

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

This separate software program is called the database management system (DBMS). There are many
types of database management systems available, varying in terms of the following characteristics:

� Price

� Ability to implement complex information systems

� Supported hardware environment

� Flexibility for application developers

� Flexibility for end users

� Ability to set up connections with other programs

� Speed

� Ongoing operational costs

� User-friendliness

DBMS Components
A DBMS has many components, including a kernel, data dictionary, query language, and tools.

Kernel
The core of any DBMS consists of the code that handles physical data storage, data transport (input and
output) between external and internal memory, integrity checking, and so on. This crucial part of the
DBMS is commonly referred to as the engine or kernel.

Data Dictionary
Another important task of the DBMS is the maintenance of a data dictionary, containing all data about
the data (the metadata). Here are some examples of information maintained in a data dictionary:

� Overview of all entities and attributes in the database

� Constraints (integrity)

� Access rights to the data

� Additional semantic explanations

� Database user authorization data

Query Languages
Each DBMS vendor supports one or more languages to allow access to the data stored in the database.
These languages are commonly referred to as query languages, although this term is rather confusing.
SQL, the language this book is all about, has been the de facto market standard for many years.

8

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Other Query Languages, Really?

SQL is such a common query language that very few realize that there were ever any others. In fact, few
even comprehend the concept that there can be other languages than SQL. But there are others. Oracle
Rdb supports SQL, but Rdb also supports a language called Relational Database Operator (RDO). (Yes,
you’ve heard it here: there was an RDO long before Microsoft took up that abbreviation). RDO is a language
developed by Digital Equipment Corporation (DEC) for use in their own database management system.
Oracle bought that system, and continues to support the use of RDO to this day.The Ingres database, once
a competitor to Oracle, also had its own query language. Ingres originally supported a language known as
Quel. That language did not compete well with SQL, and Ingres Corporation was eventually forced to build
SQL support into their product.Today, SQL is the dominant database access language. All mainstream
relational databases claim to support it. And yet, no two databases support it in quite the same way.
Instead of completely different languages with dissimilar names, today we have “variations” that we refer
to as Oracle SQL, Microsoft SQL, DB2 SQL, and so forth. The world really hasn’t changed much.

DBMS Tools
Most DBMS vendors supply many secondary programs around their DBMS software. I refer to all these
programs with the generic term tools. These tools allow users to perform tasks such as the following:

� Generate reports

� Build standard data-entry and data-retrieval screens

� Process database data in text documents or in spreadsheets

� Administer the database

Database Applications
Database applications are application programs that use an underlying database to store their data.
Examples of such database applications are screen- and menu-driven data-entry programs,
spreadsheets, report generators, and so on.

Database applications are often developed using development tools from the DBMS vendor. In fact,
most of these development tools can be considered to be database applications themselves, because
they typically use the database not only to store regular data, but also to store their application
specifications. For example, consider tools such as Oracle JDeveloper and Oracle Application Express.
With these examples we are entering the relational world, which is introduced in the next section.

DBMS Terms Review
In this section, the following terms were introduced:

� Database

� Database management system (DBMS)

� Kernel

9

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

� Data dictionary

� Query language

� Tool

� Database application

1.4 Relational Database Management Systems
The theoretical foundation for a relational database management system (RDBMS) was laid out in 1970
by Ted Codd in his famous article “A Relational Model of Data for Large Shared Data Banks” (Codd,
1970). He derived his revolutionary ideas from classical components of mathematics: set theory,
relational calculus, and relational algebra.

About ten years after Ted Codd published his article, around 1980, the first RDBMS systems
(Relational DBMS systems) aiming to translate Ted Codd’s ideas into real products became
commercially available. Among the first pioneering RDBMS vendors were Oracle and Ingres, followed a
few years later by IBM with SQL/DS and DB2.

We won’t go into great detail about this formal foundation for relational databases, but we do need
to review the basics in order to explain the term relational. The essence of Ted Codd’s ideas was two
main requirements:

� Clearly distinguish the logical task (the what) from the physical task (the how)
both while designing, developing, and using databases.

� Make sure that an RDBMS implementation fully takes care of the physical task, so
the system users need to worry only about executing the logical task.

These ideas, regardless of how evident they seem to be nowadays, were quite revolutionary in the
early 1970s. Most DBMS implementations in those days did not separate the logical and physical tasks at
all; did not have a solid theoretical foundation of any kind; and offered their users many surprises, ad
hoc solutions, and exceptions. Ted Codd’s article started a revolution and radically changed the way
people think about databases.

What makes a DBMS a relational DBMS? In other words: how can we determine how relational a
DBMS is? To answer this question, we must visit the theoretical foundation of the relational model. The
following two sections discuss two important aspects of the relational model: relational data structures
and relational operators. After these two sections, we will address another question: how relational is my
DBMS?

1.5 Relational Data Structures
This section introduces the most important relational data structures and concepts:

� Tables, columns, and rows

� The information principle

� Datatypes

� Keys

� Missing information and null values

10

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Tables, Columns, and Rows
The central concept in relational data structures is the table or relation (from which the relational model
derives its name). A table is defined as a set of rows, or tuples. The rows of a table share the same set of
attributes; a row consists of a set of (attribute name; attribute value) pairs. All data in a relational
database is represented as column values within table rows.

In summary, the basic relational data structures are as follows:

� A database, which is a set of tables

� A table, which is a set of rows

� A row, which is a set of column values

The definition of a row is a little sloppy. A row is not just a set of column values. A more precise
definition would be as follows:

A row is a set of ordered pairs, where each ordered pair consists of an attribute name with an
associated attribute value.

For example, the following is a formal and precise way to represent a row from the DEPARTMENTS
table:

{(deptno;40),(dname;HR),(location;Boston),(mgr;7839)}

This row represents department 40: the HR department in Boston, managed by employee 7839. It

would become irritating to represent rows like this; therefore, this book will use less formal notations as
much as possible. After all, the concept of tables, rows, and columns is rather intuitive.

In most cases, there is a rather straightforward one-to-one mapping between the entities of the data
model and the tables in a relational database. The rows represent the occurrences of the corresponding
entity, and the column headings of the table correspond with the attributes of that entity. See Figure 1-1
for an illustration of the DEPARTMENTS table.

Figure 1-1. The DEPARTMENTS table

11

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

The Information Principle
The only way you can associate data in a relational database is by comparing column values. This
principle, known as the information principle, is applied very strictly, and it is at the heart of the term
relational.

An important property of sets is the fact that the order of their elements is meaningless. Therefore,
the order of the rows in any relational table is meaningless, too, and the order of columns is also
meaningless.
Because this is both very fundamental and important, let’s rephrase this in another way: in a relational
database, there are no pointers to represent relationships. For example, the fact that an employee works
for a specific department can be derived only from the two corresponding tables by comparing column
values in the two department number columns. In other words, for every retrieval command, you must
explicitly specify which columns must be compared. As a consequence, the flexibility to formulate ad
hoc queries in a relational database has no limits. The flip side of the coin is the risk of (mental) errors
and the problem of the correctness of your results. Nearly every SQL query will return a result (as long as
you don’t make syntax errors), but is it really the answer to the question you had in mind?

Datatypes
One of the tasks during data modeling is also to decide which values are allowed for each attribute. As a
minimum, you could allow only numbers in a certain column, or allow only dates or text. You can
impose additional restrictions, such as by allowing only positive integers or text of a certain maximum
length.

A set of allowed attribute values is sometimes referred to as a domain. Another common term is
datatype (or just type). Each attribute is defined on a certain type. This can be a standard (built-in) type
or a user-defined type.

Keys
Each relational table must have at least one candidate key. A candidate key is an attribute (or attribute
combination) that uniquely identifies each row in that table, with one additional important property: as
soon as you remove any attribute from this candidate key attribute combination, the property of unique
identification is gone. In other words, a table cannot contain two rows with the same candidate key
values at any time.

For example, the attribute combination course code and start date is a candidate key for a table
containing information about course offerings. If you remove the start date attribute, the remaining
course code attribute is not a candidate key anymore; otherwise, you could offer courses only once. If
you remove the course code attribute, the remaining start date attribute is not a candidate key anymore;
otherwise, you would never be able to schedule two different courses to start on the same day.

In case a table has multiple candidate keys, it is normal practice to select one of them to become the
primary key. All components (attributes) of a primary key are mandatory; you must specify attribute
values for all of them. Primary keys enforce a very important table constraint: entity integrity.

Sometimes, the set of candidate keys doesn’t offer a convenient primary key. In such cases, you may
choose a surrogate key by adding a meaningless attribute with the sole purpose of being the primary key.

12

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

� Note Using surrogate keys comes with advantages and disadvantages, and fierce debates between database
experts. This section is intended to only explain the terminology, without offering an opinion on the use of
surrogate keys.

A relational table can also have one or more foreign keys. Foreign key constraints are subset
requirements; the foreign key values must always be a subset of a corresponding set of primary key
values. Some typical examples of foreign key constraints are that an employee can work for only an
existing department and can report to only an existing manager. Foreign keys implement referential
integrity in a relational database.

Missing Information and Null Values
A relational DBMS is supposed to treat missing information in a systematic and context-insensitive
manner. If a value is missing for a specific attribute of a row, it is not always possible to decide whether a
certain condition evaluates to true or false. Missing information is represented by null values in the
relational world.

The term null value is actually misleading, because it does not represent a value; it represents the
fact that a value is missing. For example, null marker would be more appropriate. However, null value is
the term most commonly used, so this book uses that terminology. Figure 1-2 shows how null values
appear in a partial listing of the EMPLOYEES table.

Figure 1-2. Nulls represent missing values.

Null values imply the need for a three-valued logic, such as implemented (more or less) in the SQL
language. The third logical value is unknown.

� Note Null values have had strong opponents and defenders. For example, Chris Date is a well-known opponent
of null values and three-valued logic. His articles about this subject are highly readable, entertaining, and
clarifying.

13

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Constraint Checking
Although most RDBMS vendors support integrity constraint checking in the database these days (Oracle
implemented this feature a number of years ago), it is sometimes also desirable to implement constraint
checking in client-side database applications. Suppose you have a network between a client-side data-
entry application and the database, and the network connection is a bottleneck. In that case, client-side
constraint checking probably results in much better response times, because there is no need to access
the database each time to check the constraints. Code-generating tools typically allow you to specify
whether constraints should be enforced at the database side, the client side, or both sides.

� Caution If you implement certain constraints in your client-side applications only, you risk database users
bypassing the corresponding constraint checks by using alternative ways to connect to the database.

Predicates and Propositions
To finish this section about relational data structures, there is another interesting way to look at tables
and rows in a relational database from a completely different angle, as introduced by Hugh Darwen. This
approach is more advanced than the other topics addressed in this chapter, so you might want to revisit
this section later.

You can associate each relational table with a table predicate and all rows of a table with
corresponding propositions. Predicates are logical expressions, typically containing free variables, which
evaluate to true or false. For example, this is a predicate:

� There is a course with title T and duration D, price P, frequency F, and a maximum
number of attendees M.

If we replace the five variables in this predicate (T, D, P, F, and M) with actual values, the result is a
proposition. In logic, a proposition is a predicate without free variables; in other words, a proposition is
always true or false. This means that you can consider the rows of a relational table as the set of all
propositions that evaluate to true.

Relational Data Structure Terms Review
In this section, the following terms were introduced:

� Tables (or relations)

� Rows (or tuples)

� Columns and domains

� Candidate, primary, and foreign keys

� Integrity checking at the database level

� Missing information, null values, and three-valued logic

� Predicates and propositions

14

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

1.6 Relational Operators
To manipulate data, you need operators that can be applied to that data. Multiplication and addition are
typical examples of operators in mathematics; you specify two numbers as input, and the operator
produces one output value as a result. Multiplication and addition are examples of closed operators,
because they produce “things” of the same type you provided as input (numbers). For example, for
integers, addition is closed. Add any two integers, and you get another integer. Try it—you can’t find two
integers that add up to a noninteger. However, division over the integers is not closed; for example, 1
divided by 2 is not an integer. Closure is a nice operator property, because it allows you to (re)use the
operator results as input for a next operator.

In a database environment, you need operators to derive information from the data stored in the
database. In an RDBMS environment, all operators should operate at a high logical level. This means,
among other things, that they should not operate on individual rows, but rather on tables, and that the
results of these operators should be tables, too.

Because tables are defined as sets of rows, relational operators should operate on sets. That’s why
some operators from the classical set theory—such as the union, the difference, and the intersection—
also show up as relational operators. See Figure 1-3 for an illustration of these three set operators.

Figure 1-3. The three most common set operators

Along with these generic operators from set theory that can be applied to any sets, there are some
additional relational operators specifically meant to operate on tables. You can define as many relational
operators as you like, but, in general, most of these operators can be reduced to (or built with) a limited
number of basic relational operators. The most common relational operators are the following:

� Restriction: This operator results in a subset of the rows of the input table, based
on a specified restriction condition. This operator is also referred to as selection.

15

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

� Projection: This operator results in a table with fewer columns, based on a
specified set of attributes you want to see in the result. In other words, the result is
a vertical subset of the input table.

� Union: This operator merges the rows of two input tables into a single output
table; the result contains all rows that occur in at least one of the input tables.

� Intersection: This operator also accepts two input tables; the result consists of all
rows that occur in both input tables.

� Minus: Again, based on two input tables, this operator produces a result that
consists of those rows that occur in the first table but do not occur in the second
table. Note that this operator is not symmetric; A MINUS B is not the same as B
MINUS A. This operator is also referred to as difference.

� (Cartesian) product: From two input tables, all possible combinations are
generated by concatenating a row from the first table with a row from the second
table.

� (Natural) Join: From two input tables, one result table is produced. The rows in
the result consist of all combinations of a row from the first table with a row from
the second table, provided both rows have identical values for the common
attributes.

The natural join is an example of an operator that is not strictly necessary, because the effect of this
operator can also be achieved by applying the combination of a Cartesian product, followed by a
restriction (to check for identical values on the common attributes), and then followed by a projection to
remove the duplicate columns.

1.7 How Relational Is My DBMS?
The term relational is used (and abused) by many DBMS vendors these days. If you want to determine
whether these vendors speak the truth, you are faced with the problem that relational is a theoretical
concept. There is no simple litmus test to check whether or not a DBMS is relational. Actually, to be
honest, there are no pure relational DBMS implementations. That’s why it is better to investigate the
relational degree of a certain DBMS implementation.

This problem was identified by Ted Codd, too; that’s why he published 12 rules (actually, there are
13 rules, if you count rule zero, too) for relational DBMS systems in 1986. Since then, these rules have
been an important yardstick for RDBMS vendors. Without going into too much detail, Codd’s rules are
listed here, with brief explanations:

0. Rule Zero: For any DBMS that claims to be relational, that system must be able
to manage databases entirely through its relational capabilities.

1. The Information Rule: All information in a relational database is represented
explicitly at the logical level and in exactly one way: by values in tables.

2. Guaranteed Access Rule: All data stored in a relational database is guaranteed
to be logically accessible by resorting to a combination of a table name,
primary key value, and column name.

16

 www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

3. Systematic Treatment of Missing Information: Null values (distinct from the
empty string, blanks, and zero) are supported for representing missing
information and inapplicable information in a systematic way, independent of
the datatype.

4. Dynamic Online Catalog: The database description is represented at the
logical level in the same way as ordinary data, so that authorized users can
apply the same relational language to its interrogation as they apply to the
regular data.

5. Comprehensive Data Sublanguage: There must be at least support for one
language whose statements are expressible by some well-defined syntax and
comprehensive in supporting all of the following: data definition, view
definition, data manipulation, integrity constraints, authorization, and
transaction boundaries handling.

6. Updatable Views: All views that are theoretically updatable are also updatable
by the system.

7. High-Level Insert, Update, and Delete: The capability of handling a table or a
view as a single operand applies not only to the retrieval of data, but also to the
insertion, updating, and deletion of data.

8. Physical Data Independence: Application programs remain logically
unimpaired whenever any changes are made in either storage representations
or access methods.

9. Logical Data Independence: Application programs remain logically
unimpaired when information-preserving changes that theoretically permit
unimpairment are made to the base tables.

10. Integrity Independence: Integrity constraints must be definable in the
relational data sublanguage and storable in the catalog, not in the application
programs.

11. Distribution Independence: Application programs remain logically
unimpaired when data distribution is first introduced or when data is
redistributed.

12. The Nonsubversion Rule: If a relational system also supports a low-level
language, that low-level language cannot be used to subvert or bypass the
integrity rules and constraints expressed in the higher-level language.

Rule 5 refers to transactions. Without going into too much detail here, a transaction is defined as a
number of changes that should be treated by the DBMS as a single unit of work; a transaction should
always succeed or fail completely. For further reading, please refer to Oracle Insights: Tales of the Oak
Table by Dave Ensor (Apress, 2004), especially Chapter 1.

1.8 The Oracle Software Environment
Oracle Corporation has its headquarters in Redwood Shores, California. It was founded in 1977, and it
was (in 1979) the first vendor to offer a commercial RDBMS.

17

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

The Oracle software environment is available for many different platforms, ranging from personal
computers (PCs) to large mainframes and massive parallel processing (MPP) systems. This is one of the
unique selling points of Oracle: it guarantees a high degree of independence from hardware vendors, as
well as various system growth scenarios, without losing the benefits of earlier investments, and it offers
extensive transport and communication possibilities in heterogeneous environments.

The Oracle software environment has many components and bundling options. The core
component is the DBMS itself: the kernel. The kernel has many important tasks, such as handling all
physical data transport between memory and external storage, managing concurrency, and providing
transaction isolation. Moreover, the kernel ensures that all stored data is represented at the logical level
as relational tables. An important component of the kernel is the optimizer, which decides how to access
the physical data structures in a time-efficient way and which algorithms to use to produce the results of
your SQL commands.

Application programs and users can communicate with the kernel by using the SQL language, the
main topic of this book. Oracle SQL is an almost fully complete implementation of the ANSI/ISO/IEC
SQL:2003 standard. Oracle plays an important role in the SQL standardization process and has done that
for many years.

Oracle also provides many tools with its DBMS, to render working with the DBMS more efficient
and pleasurable. Figure 1-4 illustrates the cooperation of these tools with the Oracle database, clearly
showing the central role of the SQL language as the communication layer between the kernel and the
tools, regardless of which tool is chosen.

Figure 1-4. Tools, SQL, and the Oracle database

�� Note Besides tools enabling you to build (or generate) application programs, Oracle also sells many ready-to-
use application programs, such as the Oracle E-Business Suite and PeopleSoft Enterprise.

18

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

The following are examples of Oracle software components:

� SQL Plus and SQL Developer: These two tools stay the closest to the SQL language
and are ideal for interactive, ad hoc SQL statement execution and database access.
These are the tools we will mainly use in this book. SQL Plus is a command line
tool while SQL Developer is a graphical database administration and development
tool.

� Note Don’t confuse SQL with SQL Plus or SQL Developer. SQL is a language, and SQL Plus and SQL Developer
are tools.

� Oracle Developer Suite: This is an integrated set of development tools, with the
main components Oracle JDeveloper, Oracle Forms, and Oracle Reports.

� Oracle Enterprise Manager: This graphical user interface (GUI), which runs in a
browser environment, supports Oracle database administrators in their daily
work. Regular tasks like startup, shutdown, backup, recovery, maintenance, and
performance management can be done with Enterprise Manager.

1.9 Case Tables
This section introduces the seven case tables used throughout this book for all examples and exercises.
Appendix A provides a complete description of the tables and also contains some helpful diagrams and
reports of the table contents. Chapters 3 and 7 contain the SQL commands to create the case tables
(without and with constraints, respectively).

You need some understanding of the structure of the case tables to be able to write SQL statements
against the contents of those tables. Otherwise, your SQL statements may be incorrect.

� Note You can download a script to create the case tables used in this book. Visit the book’s catalog page at the
Apress website, at the following URl: http://apress.com/book/view/1430271970. Then look in the “Book
Resources” section on that page. You should see a download containing a script to create and populate the
example schema for the book.

The ERM Diagram of the Case
We start with an ERM diagram depicting the logical design of our case, which means that it does not
consider any physical (implementation-dependent) circumstances. A physical design is the next stage,
when the choice is made to implement the case in an RDBMS environment, typically resulting in a table
diagram or just a text file with the SQL statements to create the tables and their constraints.

19

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Figure 1-5 shows the ERM diagram for the example used in this book. The ERM diagram shows
seven entities, represented by their names in rounded-corner boxes. To maintain readability, most
attributes are omitted in the diagram; only the key attributes are displayed.

Figure 1-5. ERM diagram of the case

We have several relationships between these entities. The ten crow’s feet connectors in the diagram

represent one-to-many relationships. Each relationship can be read in two directions. For example, the
relationship between OOFFERING and REGISTRATION should be interpreted as follows:

� Each registration is always for exactly one course offering.

� A course offering may have zero, one, or more registrations.

Course offerings without registrations are allowed. All one-to-many relationships in our case have
this property, which is indicated in this type of diagram with a dotted line at the optional side of the
relationship.

Notice that we have two different relationships between EMPLOYEE and DEPARTMENT: each employee
works for precisely one department, and each employee can be the manager of zero, one, or more
departments. The EMPLOYEE entity also shows a recursive relationship (a relationship of an entity with
itself) that implements the hierarchy within the company.

Each entity in the ERM diagram has a unique identifier, allowing us to uniquely identify all
occurrences of the corresponding entities. This may be a single attribute (for example, EMPNO for the
EMPLOYEE entity) or a combination of attributes, optionally combined with relationships. Each attribute
that is part of a unique identifier is preceded with a hash symbol (#); relationships that are part of a
unique identifier are denoted with a small crossbar. For example, the unique identifier of the OFFERING
entity consists of a combination of the BEGINDATE attribute and the relationship with the COURSE entity,
and the unique identifier of the entity REGISTRATION consists of the two relationships to the EMPLOYEE and
OFFERING entities. By the way, entities like REGISTRATION are often referred to as intersection entities;
REGISTRATION effectively implements a many-to-many relationship between EMPLOYEE and OFFERING.

An ERM diagram can be transformed into a relational table design with the following steps:

20

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

1. Each entity becomes a table.

2. Each attribute becomes a column.

3. Each relationship is transformed into a foreign key (FK) constraint at the
crow’s foot side.

4. Each unique identifier becomes a component of the primary key (PK).

This mapping results in seven tables: EMPLOYEES, DEPARTMENTS, SALGRADES, COURSES, OFFERINGS,
REGISTRATION, and HISTORY.

Table Descriptions
Tables 1-1 through 1-7 describe the structures of the case tables.

Table 1-1. The EMPLOYEES Table

Column Description Key

EMPNO Number, unique for every employee PK

ENAME Last name --

INIT Initials (without punctuation) --

JOB Job description of the employee --

MGR The employee number of the employee’s manager FK

BDATE Date of birth --

MSAL Monthly salary (excluding bonus or commission) --

COMM Commission component of the yearly salary (only relevant for sales reps) --

DEPTNO The number of the department for which the employee works FK

21

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Table 1-2. The DEPARTMENTS Table

Column Description Key

DEPTNO Unique department number PK

DNAME Department name --

LOCATION Department location (city) --

MGR Employee number of the manager of the department FK

Table 1-3. The SALGRADES Table

Column Description Key

GRADE Unique salary grade number PK

LOWERLIMIT Lowest salary that belongs to the grade --

UPPERLIMIT Highest salary that belongs to the grade --

BONUS Optional (tax-free) bonus on top of the monthly salary --

Table 1-4. The COURSES Table

Column Description Key

CODE Course code; unique for each course PK

DESCRIPTION Short description of the course contents --

CATEGORY Course type indicator (allowed values: GEN, BLD, and DSG) --

DURATION Course duration, expressed in days --

22

 CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

Table 1-5. The OFFERINGS Table

Column Description Key

COURSE Course code PK, FK

BEGINDATE Start date of the course offering PK

TRAINER Employee number of the employee teaching the course FK

LOCATION Location (city) where the course is offered --

Table 1-6. The REGISTRATIONS Table

Column Description Key

ATTENDEE Employee number of the course attendee PK, FK1

COURSE Course code PK, FK2

BEGINDATE Start date of the course offering PK, FK2

EVALUATION Evaluation of the course by the attendee (positive integer on the scale 1–5) --

Table 1-7. The HISTORY Table

Column Description Key

EMPNO Employee number PK, FK1

BEGINYEAR Year component (4 digits) of BEGINDATE --

BEGINDATE Begin date of the time interval PK

ENDDATE End date of the time interval --

DEPTNO The number of the department worked for during the interval FK2

MSAL Monthly salary during the interval --

COMMENTS Allows for free text style comments --

23

CHAPTER 1 � RELATIONAL DATABASE SYSTEMS AND ORACLE

24

In the description of the EMPLOYEES table, the COMM column deserves some special attention. This
commission attribute is relevant only for sales representatives, and therefore contains structurally
missing information (for all other employees). We could have created a separate SALESREPS table (with
two columns: EMPNO and COMM) to avoid this problem, but for the purpose of this book, the table structure
is kept simple.

The structure of the DEPARTMENTS table is straightforward. Note the two foreign key constraints
between this table and the EMPLOYEES table: an employee can “work for” a department or “be the
manager” of a department. Note also that we don’t insist that the manager of a department actually
works for that department, and it is not forbidden for any employee to manage more than one
department.

The salary grades in the SALGRADES table do not overlap, although in salary systems in the real world,
most grades are overlapping. In this table, simplicity rules. This way, every salary always falls into exactly
one grade. Moreover, the actual monetary unit (currency) for salaries, commission, and bonuses is left
undefined. The optional tax-free bonus is paid monthly, just like the regular monthly salaries.

In the COURSES table, three CATEGORY values are allowed:

� GEN (general), for introductory courses

� BLD (build), for building applications

� DSG (design), for system analysis and design

This means that these three values are the only values allowed for the CATEGORY column; this is an
example of an attribute constraint. This would also have been an opportunity to design an additional
entity (and thus another relational table) to implement course types. In that case, the CATEGORY column
would have become a foreign key to this additional table. But again, simplicity was the main goal for this
set of case tables.

In all database systems, you need procedures to describe how to handle historical data in an
information system. This is a very important—and, in practice, far from trivial—component of system
design. In our case tables, it is particularly interesting to consider course offerings and course
registrations in this respect.

If a scheduled course offering is canceled at some point in time (for example, due to lack of
registrations), the course offering is not removed from the OFFERINGS table, for statistical/historical
reasons. Therefore, it is possible that the TRAINER and/or LOCATION columns are left empty; these two
attributes are (of course) relevant only as soon as a scheduled course is going to happen. By the way, this
brings up the valid question whether scheduled course offerings and “real” course offerings might be
two different entities. Again, an opportunity to end up with more tables; and again, simplicity was the
main goal here.

Course registrations are considered synonymous with course attendance in our example database.
This becomes obvious from the EVALUATION column in the REGISTRATIONS table, where the attendee’s
appreciation of the course is stored at the end of the course, expressed on a scale from 1 to 5; the
meaning of these numbers ranges from bad (1) to excellent (5). In case a registration is canceled before a
course takes place, we remove the corresponding row from the REGISTRATIONS table. In other words, if
the BEGINDATE value of a course registration falls in the past, this means (by definition) that the
corresponding course offering took place and was attended.

The HISTORY table maintains information about the working history of all employees. More
specifically, it holds data about the departments they have been working for and the salaries they made
over the years, starting from the day they were hired. Every change of department and/or monthly salary
is recorded in this table. The current values for DEPTNO and MSAL can be stored in this table, too, by
keeping the ENDDATE attribute empty until the next change. The COMMENTS column offers room for free text
comments, for example, to justify or clarify certain changes.

C H A P T E R 2

� � �

Introduction to SQL, SQL*Plus,
and SQL Developer

This chapter provides an introduction to the SQL language and two tools for working with it. The first
section presents a high-level overview of the SQL language, which will give you an idea of the capabilities
of this language. Then some important basic concepts of the SQL language are introduced in the second
section, such as constants, literals, variables, expressions, conditions, functions, operators, operands,
and so on. Finally, this chapter provides a tour of SQL*Plus and SQL Developer, the two main tools we
will use throughout this book to learn the SQL language. In order to maximize the benefits of any tool,
you first must learn how to use it and to identify the main features available in that tool.

This is the first chapter with real SQL statement examples. It thus would be beneficial for you to
have access to an Oracle database and a schema with the seven case tables introduced in Chapter 1, and
described in detail in Appendix A. You can find the scripts to create that schema in the download hosted
from this book’s catalog page or the Source Code page on the Apresswebsite (www.apress.com).

We assume that Oracle is running; database (instance) startup and shutdown are normally tasks of a

system or database administrator. Specific startup and shutdown procedures might be in place in your
environment. However, if you are working with a stand-alone Oracle environment, and you have enough
privileges, you can try the SQL*Plus STARTUP command or use the GUI offered by Oracle Enterprise
Manager to start up the database.

2.1 Overview of SQL
SQL (the abbreviation stands for Structured Query Language) is a language you can use in (at least) two
different ways: interactively or embedded. Using SQL interactively means that you enter SQL commands
via a keyboard, and you get the command results displayed on a terminal or computer screen. Using
embedded SQL involves incorporating SQL commands within a program in a different programming
language (such as Java or C). This book deals solely with interactive SQL usage.

Although SQL is called a query language, its possibilities go far beyond simply data retrieval.
Normally, the SQL language is divided into the following four command categories:

� Data definition (Data Definition Language, or DDL)

� Data manipulation (Data Manipulation Language, or DML)

� Retrieval

� Security and authorization

25

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Data Definition
The SQL data definition commands allow you to create, modify, and remove components of a database
structure. Typical database structure components are tables, views, indexes, constraints, synonyms,
sequences, and so on. Chapter 1 introduced tables, columns, and constraints; other database object
types (such as views, indexes, synonyms, and sequences) will be introduced in later chapters.

Almost all SQL data definition commands start with one of the following three keywords:

� CREATE, to create a new database object

� ALTER, to change an aspect of the structure of an existing database object

� DROP, to drop (remove) a database object

For example, with the CREATE VIEW command, you can create views. With the ALTER TABLE command,
you can change the structure of a table (for example, by adding, renaming, or dropping a column). With
the DROP INDEX command, you can drop an index.

One of the strengths of an RDBMS is the fact that you can change the structure of a table without
needing to change anything in your existing database application programs. For example, you can easily
add a column or change its width with the ALTER TABLE command. In modern DBMSs such as Oracle, you
can even do this while other database users or applications are connected and working on the
database—like changing the wheels of a train at full speed. This property of an RDBMS is known as
logical data independence (see Ted Codd’s rule 9, discussed in Chapter 1).

Data definition is covered in more detail in Chapters 3 and 7.

Data Manipulation and Transactions
Just as SQL data definition commands allow you to change the structure of a database, SQL data
manipulation commands allow you to change the contents of your database. For this purpose, SQL offers
three basic data manipulation commands:

� INSERT, to add rows to a table

� UPDATE, to change column values of existing rows

� DELETE, to remove rows from a table

You can add rows to a table with the INSERT command in two ways. One way is to add rows one by
one by specifying a list of column values in the VALUES clause of the INSERT statement. The other is to add
one or more rows to a table based on a selection (and manipulation) of existing data in the database
(called a subquery).

� Note You can also load data into an Oracle database with various tools specifically developed for this purpose—
such as Data Pump in Oracle Database 10g, Export and Import in previous Oracle releases, and SQL*Loader.
These tools are often used for high-volume data loads.

26

 www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Data manipulation commands are always treated as being part of a transaction. This means (among
other things) that all database changes caused by SQL data manipulation commands get a pending
status, until you confirm (commit) or cancel (roll back) the transaction. No one (except the transaction
itself) can see the pending changes of a transaction before it is committed. That’s why a transaction is
often labeled atomic: it is impossible for other database users to see parts of a transaction in the
database. It is “all or nothing,” no matter how many DML operations the transaction comprises.

SQL offers two commands to control your transactions explicitly:

� COMMIT, to confirm all pending changes of the current transaction

� ROLLBACK, to cancel all pending changes and restore the original situation

Sometimes, transactions are committed implicitly; that is, without any explicit request from a user.
For example, every data definition command implicitly commits your current transaction.

Note the following important differences between data manipulation and data definition:

� DELETE empties a table; DROP removes a table. TRUNCATE allows you to delete all the
rows in a table in an efficient (but irrevocable) way.

� UPDATE changes the contents of a table; ALTER changes its structure.

� You can undo the consequences of data manipulation with ROLLBACK; data
definition commands are irrevocable.

Chapter 6 will revisit data manipulation in more detail. Chapter 7 discusses the TRUNCATE command,
which is considered a data definition command.

Retrieval
The only SQL command used to query database data is SELECT. This command acts at the set (or table)
level, and always produces a set (or table) as its result. If a certain query returns exactly one row, or no
rows at all, the result is still a set: a table with one row or the empty table, respectively.

The SELECT command (as defined in the ANSI/ISO SQL standard) has six main components, which
implement all SQL retrieval. Figure 2-1 shows a diagram with these six main components of the SELECT
command.

Figure 2-1. The six main components of the SELECT command

27

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

The lines in this diagram represent all possibilities of the SELECT command, like a railroad map. You
can deduce the following three syntax rules from Figure 2-1:

� The order of these six command components is fixed.

� The SELECT and FROM components are mandatory.

� The remaining components (WHERE, GROUP BY, HAVING, and ORDER BY) are optional.

Table 2-1 gives a high-level description of the roles of these six components of the SELECT command.

Table 2-1. The Six Main Components of the SELECT Command

Component Description

FROM Which table(s) is (are) needed for retrieval?

WHERE What is the condition to filter the rows?

GROUP BY How should the rows be grouped/aggregated?

HAVING What is the condition to filter the aggregated groups?

SELECT Which columns do you want to see in the result?

ORDER BY In which order do you want to see the resulting rows?

� Tip The order of the SELECT command components as displayed in Table 2-1 is also a good order to think about
them when writing SQL statements. Notice that the SELECT clause is almost the last one.

Components of the SELECT command implement three of the relational operators introduced in
Chapter 1 (Section 1.6) as follows:

� The SELECT component acts as the projection operator.

� The FROM component implements the join operator.

� The restriction operator corresponds to the WHERE component.

Now that we are on the subject of relational operators, note that the union, intersection, and
difference (minus) operators are also implemented in SQL. You can use these three set operators to
combine the results of multiple SELECT commands into a single result table, as illustrated in Figure 2-2.
We will revisit these operators in Chapter 8.

28

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-2. A SQL set operators syntax diagram

Security
SQL offers several commands to implement data security and to restrict data access.

First of all, access to the database must be defined. User authorization is implemented by providing
database users a login name and a password, together with some database-wide privileges. These are the
most important commands in this area:

� CCREATE USER, to define new database users

� ALTER USER, to change properties (privileges and passwords) of existing database
users

� DROP USER, to remove user definitions from the database

Privileges and Roles
If users are authorized to access the database, you can implement fine-grained data access by granting
specific privileges. The Oracle DBMS offers two types of privileges: system privileges and object
privileges.

System privileges pertain to the right to perform certain (nonobject-related) actions; for example,
you can have the CREATE SESSION privilege (allows you to log on to the database) and the CREATE TABLE
privilege. Oracle supports approximately 140 different system privileges.

Object privileges involve the right to access a specific database object in a specific way; for example,
the right to issue SELECT, INSERT, and UPDATE commands against the EMPLOYEES table. Table 2-2 lists the
most important Oracle object privileges.

� Note Granting and revoking system privileges is typically a task for database administrators. See Oracle SQL
Reference, part of the official documentation set for the Oracle Database, for more details on both system and
object privileges.

29

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-2. Important Oracle Object Privileges

Object Privilege Allowable Action

ALTER Change the table structure (with ALTER TABLE)

DELETE Delete rows

EXECUTE Execute stored functions or procedures

FLASHBACK Go back in time (with FLASHBACK TABLE)

INDEX Create indexes on the table

INSERT Insert new rows

REFERENCES Create foreign key constraints to the table

SELECT Query the table (or view)

UPDATE Change column values of existing rows

The Oracle DBMS allows you to group privileges into roles. Roles make user management much

easier, more flexible, and also more manageable. The following are the corresponding SQL commands
used to administer these privileges and roles:

� GRANT, to grant certain privileges or roles to users or roles

� REVOKE, to revoke certain privileges or roles from users or roles

A typical scenario is the following:

CREATE ROLE <role name>
GRANT privileges TO <role name>
GRANT <role name> TO user(s)

The first step creates a new (empty) role. The second step (which can be repeated as many times as

you like) populates the role with a mix of object and system privileges. The third step grants the role (and
thereby all its privileges) to a user in a single step.

Roles have several useful and powerful properties:

� Roles are dynamic; further changes to the role contents automatically affect all
users previously granted that role.

� Roles can be enabled or disabled during a session.

� You can protect roles with a password. In that case, only users who know the role
password can enable the role.

� The most important advantage of roles is their manageability.

30

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

GRANT and REVOKE
Each table has an owner, the user who created the table. Table owners are able to grant privileges on
their tables to other database users using the GRANT command. As soon as you create a table, you
implicitly get all object privileges on that table, WITH GRANT OPTION, as illustrated in Figure 2-3, which
shows the syntax of the GRANT command.

� Note System privileges and roles are not considered in Figure 2-3, so the syntax diagram is incomplete.

Figure 2-3. The GRANT command syntax diagram

Here are some comments about the GGRANT command:

� Table owners cannot grant the right to remove a table (DROP TABLE) to other
database users. Note, however, that Oracle supports a (rather dangerous) DROP ANY
TABLE system privilege.

� If you want to grant all object privileges to someone else, you can use the keyword
ALL (see Figure 2-3). (Instead of ALL PRIVILEGES, the Oracle DBMS also allows you
to specify ALL.)

� With a single GRANT command, you can grant privileges to a single user, a list of
users, a role, or all database users. You can address all database users with the
pseudo-user PUBLIC (see Figure 2-3).

� The UPDATE privilege supports an optional refinement: this privilege can also be
granted for specific columns, by specifying column names between parentheses.

� In principle, there is no difference between tables and views when granting object
privileges; however, the privileges ALTER, INDEX, and REFERENCES are meaningless in
the context of views.

� The GRANT OPTION not only grants certain object privileges, but also grants the right
to the grantee to spread these privileges further.

31

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

The counterpart of GRANT is the REVOKE command. Figure 2-4 shows the syntax diagram for REVOKE.

Figure 2-4. The REVOKE command syntax diagram

Besides the two standard SQL commands mentioned in this section (GGRANT and REVOKE), Oracle
supports several additional commands in the security and data access area; for example, to influence the
locking behavior of the DBMS, to implement auditing, and to set up more detailed user authorization.

2.2 Basic SQL Concepts and Terminology
This section discusses the following topics:

� Constants (literals)

� Variables

� Operators, operands, conditions, and expressions

� Functions

� Database object names

� Comments

� Reserved words

Constants (Literals)
A constant (or literal) is something with a fixed value. We distinguish numbers (numeric constants) and
text (alphanumeric constants). In database jargon, alphanumeric constants are also referred to as
strings.

In the SQL language, alphanumeric constants (strings) must be placed between single quotation
marks (quotes). Numbers are also relatively straightforward in SQL; however, don’t put them between
quotes or they will be interpreted as strings. If you like, you can explicitly indicate that you want SQL to
interpret numeric values as floating point numbers by adding the suffixes f or d to indicate single (float)
or double precision, respectively. Be careful with the decimal period and group separators ((commas) in

32

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

numbers, because the correct interpretation of these characters depends on the value of a session
parameter (NLS_NUMERIC_CHARACTERS), and there are some cultural differences in this area.

In SQL, dates and time durations (intervals) are special cases. They are typically specified and
represented as alphanumeric constants, but they need something else to distinguish them from regular
strings. In other words, you must help the DBMS to interpret the strings correctly as date or time-interval
constants. Probably the most straightforward (and elegant) method is to prefix the strings with a
keyword (DATE, TIMESTAMP, or INTERVAL) and to adhere to a well-defined notation convention. (See the
examples in Table 2-3 and the third option in the following list.) These are the three options to specify
date and time-related constants in SQL:

� Specify them as alphanumeric constants (strings) and rely on implicit
interpretation and conversion by the Oracle DBMS. This is dangerous, because
things can go wrong if the actual format parameter for that session is different
from the format of the string.

� Specify them as alphanumeric constants (strings) and use a CAST or TO_DATE
conversion function to specify explicitly how the strings must be interpreted (see
Chapter 5).

� Specify them as alphanumeric constants (strings), prefixed with DATE, TIMESTAMP,
or INTERVAL. If you use INTERVAL, you also need a suffix to indicate a dimension,
such as DAY, MONTH, or YEAR.

Table 2-3 shows examples of using SQL constants.

Table 2-3. Examples of SQL Constants (Literals)

Type Example

Numeric 42
8.75
8.75F
132

Alphanumeric 'JOneS'
'GEN'
'132'

Dates and intervals DATE '2004-02-09'
TIMESTAMP '2004-09-05 11.42.59.00000'
INTERVAL '2' SECOND
INTERVAL '1-3' YEAR TO MONTH

Note the subtle difference between 132 and '132'. The difference between numbers and strings

becomes apparent when considering the operators they support. For example, numbers can be added or
multiplied, but you cannot do that with strings. The only operator you can apply to strings is the
concatenation operator.

In general, the SQL language is case-insensitive. However, there is one important exception:
alphanumeric constants (strings) are case-sensitive. For example, 'JOneS' is not equal to 'Jones'. This is
sometimes the explanation of getting the message “no rows selected” in cases where you were expecting
to see rows in the result.

33

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Variables
A variable is something that may have a varying value over time, or even an unknown value. A variable
always has a name, so you can refer to it.

SQL supports two types of variables:

� Column name variables: The name of a column stays the same, but its value
typically varies from row to row while scanning a table.

� System variables: These have nothing to do with tables; nevertheless, they can
play an important role in SQL. They are commonly referred to as pseudo columns.
See Table 2-4 for some examples of Oracle system variables.

Table 2-4. Examples of Oracle System Variables (Pseudo columns)

Variable Description

SYSDATE The current system date in the database

CURRENT_DATE The current date at the client application side

SYSTIMESTAMP The system date and exact time, with time zone information

LOCALTIMESTAMP The system date and exact time, with time zone information, at the client
application side

USER The name used to connect to the database

The difference between dates (and timestamps) at the database side and those at the client

application side can be relevant if you are connected over a network connection with a database in a
remote location.

Users commonly make mistakes by forgetting to include quotes in SQL statements. Consider the
following SQL statement fragment:

...WHERE LOCATION = UTRECHT...

LOCATION and UTRECHT are both interpreted by Oracle as variable names (column names), although

the following was probably the real intention:

...WHERE LOCATION = 'UTRECHT'...

Operators, Operands, Conditions, and Expressions
An operator does something. Operands are the “victims” of operations; that is, operands serve as input
for operators. Sometimes, operators need only a single operand (in which case, they are also referred to
as monadic operators), but most operators need two or more operands.

34

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

The SQL operators are divided in four categories, where the differentiating factor is the operand
datatype:

� Arithmetic operators

� Alphanumeric operators

� Comparison operators

� Logical operators

Arithmetic Operators
The SQL language supports four arithmetic operators, as shown in Table 2-5.

Table 2-5. SQL Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

You can apply arithmetic operators only on NUMBER values; however, there are some exceptions:

� If you subtract two DATE values, you get the difference between those two dates,
expressed in days.

� You can add a DATE and an INTERVAL value, which results in another date.

� If you add a DATE and a NUMBER, the number is interpreted as an interval expressed
in days.

The Alphanumeric Operator: Concatenation
SQL offers only one alphanumeric operator, allowing you to concatenate string expressions: ||. This
modest number of operators is compensated for by the overwhelming number of alphanumeric
functions in SQL, which are discussed in Chapter 5. For an example of the use of the concatenation
operator, see Table 2-8, later in this chapter.

Comparison Operators
The comparison operators allow you to formulate conditions in SQL. Table 2-6 shows the comparison
operators available in SQL.

35

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-6. SQL Comparison Operators

Operator Description

< Less than

> Greater than

= Equal to

<= Less than or equal to

>= Greater than or equal to

<> or != Not equal to

Expressions with comparison operators are also referred to as predicates or Boolean expressions.

These expressions evaluate to TRUE or FALSE. Sometimes, the outcome is UNKNOWN, such as when you have
rows with missing information. We will revisit this topic in more detail in Chapter 4, when we discuss
null values.

Logical Operators
SQL also offers three operators whose operands are conditions: the logical (or Boolean) operators. Table
2-7 lists these operators.

Table 2-7. SQL Logical Operators

Operator Description

AND Logical AND

OR Logical OR (the inclusive OR)

NOT Logical negation

Expressions
An expression is a well-formed string containing variables, constants, operators, or functions. Just like
constants, expressions always have a certain datatype. See Table 2-8 for some examples of expressions.

36

 www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-8. SQL Expression Examples

Expression Datatype

3 + 4 Numeric

ENAME || ', ' || INIT Alphanumeric

LOCATION = 'Utrecht' Boolean

12*MSAL > 20000 AND COMM >= 100 Boolean

BDATE + INTERVAL '16' YEAR Date

999 Numeric

The last example in Table 2-8 shows that the simplest expression is just a constant.
When SQL expressions get more complex, operator precedence can become an issue; in other words:

what are the operator priority rules? Of course, SQL has some precedence rules. For example, arithmetic
operators always have precedence over comparison operators, and comparison operators have
precedence over logical operators. However, it is highly recommended that you use parentheses in your
complex SQL expressions to force a certain expression evaluation order, just as you would do in regular
mathematics.

Functions
Oracle has added a lot of functionality to the SQL standard in the area of functions. This is definitely one
of the reasons why Oracle SQL is so powerful. You can recognize SQL functions by their signature: they
have a name, followed by one or more arguments (between parentheses) in a comma-separated list. You
can use functions in expressions, in the same way that you can use operators.

These are the six SQL function categories, based on their operand types:

� Numeric functions

� Alphanumeric functions

� Group functions

� Date functions

� Conversion functions

� Other functions

Table 2-9 shows some examples of SQL functions.

37

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-9. Examples of SQL Functions

Function Explanation

AVG(MSAL) The average monthly salary

SQRT(16) The square root of 16

LENGTH(INIT) The number of characters in the INIT column value

LOWER(ENAME) ENAME column value, in lowercase

SUBSTR(ENDDATE,4,3) Three characters of the ENDDATE column value, from the fourth position

Oracle even allows you to create your own SQL functions by using the PL/SQL or Java languages.

Chapter 5 will show a simple example of a user-defined function.

Database Object Naming
All objects in a database need names. This applies to tables, columns, views, indexes, synonyms,
sequences, users, roles, constraints, functions, and so on. In general, to enhance the readability of your
SQL code, it is highly recommended that you restrict yourself to using the characters A through Z, the
digits 0 through 9, and optionally the underscore (_).

� Note In Oracle, object names are case-insensitive; that is, internally all database object names are converted to
uppercase, regardless of how you enter those names.

You may use digits in database object names; however, database object names should always start
with a letter. Oracle object names have a maximum length of 30 characters.

Database objects need different names to be able to distinguish them, obviously. To be more
precise, database objects need unique names within their namespace. On the other hand, different
database users may use the same names for their own objects if they like, because the owner/object
name combination is used to uniquely identify an object in the database.

If you insist on creating your own object names in Oracle SQL using any characters you like
(including, for example, spaces and other strange characters), and you also want your object names to
be case-sensitive, you can include those names within double quotes. The only restriction that remains
is the maximum name length: 30 characters. Using this “feature” is discouraged, because you will always
need to include those names in double quotes again in every interactive SQL statement you want to
execute against those objects. On the other hand, you can use this technique in written applications to
prevent conflicts with reserved words, including reserved words of future DBMS versions not known to
you at application development time. Actually, several Oracle database utilities use this technique under
the hood for precisely this reason.

38

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Comments
You can add comments to SQL commands in order to clarify their intent or to enhance their
maintainability. In other words, you can add text that does not formally belong to the SQL statements
themselves, and as such should be ignored by the Oracle DBMS. You can add such comments in two
ways: between /* and */ or after two consecutive minus signs. Comments after two minus signs are
implicitly ended by a newline character; comments between /* and */ can span multiple lines. See
Listing 2-1 for two examples.

Listing 2-1. SQL Comments Examples

/* this text will be considered a comment,
 so the Oracle DBMS will ignore it ... */
-- and this text too, until the end of this line.

Listing 2-1 shows how you can add comments to SQL commands. Note that you can also add

comments to database objects with the COMMENT command. See Chapter 7 for details.

Reserved Words
Just like any other language, SQL has a list of reserved words. These are words you are not allowed to use,
for example, as database object names. If you insist on using a reserved word as an object name, you
must enclose the name within double quotes, as explained earlier in the “Database Object Naming”
section.

These are some examples of SQL reserved words: AND, CREATE, DROP, FROM, GRANT, HAVING, INDEX,
INSERT, MODIFY, NOT, NULL, NUMBER, OR, ORDER, RENAME, REVOKE, SELECT, SYNONYM, SYSDATE, TABLE, UPDATE, USER,
VALUES, VIEW, and WHERE.

� Tip The Oracle data dictionary contains a V$RESERVED_WORDS view. You can check your object names against
this view to avoid using reserved words.

See Appendix A of this book, and also the Oracle SQL Reference for more details about naming rules
for database objects and a more complete listing of SQL reserved words.

2.3 Introduction to SQL*Plus
SQL*Plus is a tool used to enter SQL commands and display the output. It is provided with every Oracle
installation, whether on Windows or Unix. It is a command line interface and supports editing, user
input, and report formatting.

39

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

� Note In 11g, SQL*Plus for Windows (sqlplusw.exe) is no longer part of the client or database install. The
command line version (sqlplus.exe) is still available. You can use an older version of SQL*Plus for Windows to
connect to an 11g database, but some functionality may not be supported. SQL Developer, which we will cover
later in this chapter, is a GUI interface that is shipped with 11g and should be considered the replacement for
SQL*Plus for Windows.

To start SQL*Plus, simply type ‘sqlplus’ at the command prompt or after starting a DOS command
session in Windows. Under normal circumstances, SQL*Plus prompts you for a username and
corresponding password. If you are able to provide a valid username/password combination, the SQL>
prompt appears on your screen to indicate that you have successfully established a session.

You can also start SQL*Plus with the username and password at the command line, as shown in
Figure 2-5. In this case, if the username/password are valid, the SQL> prompt will appear. If not, you will
be asked to enter a valid username and password.

Figure 2-5. SQL*Plus screen after a successful connection using the username/password at the command

line

You can leave SQL*Plus with the commands EXIT or QUIT.

Entering Commands
SQL*Plus not only “understands” the SQL language, but it also supports and recognizes several tool-
specific SQL*Plus commands. You must make sure to distinguish these SQL*Plus commands from SQL
commands, because SQL*Plus treats these two command types differently, as you will see.

Let’s start by entering an arbitrary (and rather simple) SQL command in SQL*Plus, as shown in
Listing 2-2.

40

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Listing 2-2. A Basic SQL SELECT Command

SQL> select *
 2 from employees;

Notice that SQL commands are often spread over multiple lines and, by default, SQL*Plus

automatically displays line numbers during SQL command entry. If your SQL command is fully entered
and you want SQL*Plus to execute it for you, you should finish the last line with a semicolon (;) as a
delimiter. If you forget the semicolon (this will probably happen quite often, initially), you can still enter
that semicolon on the next (empty) line, as shown here:

SQL> select *
 2 from employees
 3 ;

Either way, the command will execute. SQL*Plus will return all columns and all rows of the

EMPLOYEES table, since the asterisk character (*) means to show all columns of this table.

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- --------- ----- ----- ------
 7369 SMITH N TRAINER 7902 17-DEC-65 800 20
 7499 ALLEN JAM SALESREP 7698 20-FEB-61 1600 300 30
 7521 WARD TF SALESREP 7698 22-FEB-62 1250 500 30
 7566 JONES JM MANAGER 7839 02-APR-67 2975 20
 7654 MARTIN P SALESREP 7698 28-SEP-56 1250 1400 30
 7698 BLAKE R MANAGER 7839 01-NOV-63 2850 30
 7782 CLARK AB MANAGER 7839 09-JUN-65 2450 10
 7788 SCOTT SCJ TRAINER 7566 26-NOV-59 3000 20
 7839 KING CC DIRECTOR 17-NOV-52 5000 10
 7844 TURNER JJ SALESREP 7698 28-SEP-68 1500 0 30
 7876 ADAMS AA TRAINER 7788 30-DEC-66 1100 20
 7900 JONES R ADMIN 7698 03-DEC-69 800 30
 7902 FORD MG TRAINER 7566 13-FEB-59 3000 20
 7934 MILLER TJA ADMIN 7782 23-JAN-62 1300 10

Using the SQL Buffer
SQL*Plus stores your most recent SQL command in an area called the SQL buffer. The SQL buffer is an
important SQL*Plus concept. You can display the contents of the SQL buffer using a SQL*Plus command
called LIST, as shown in Listing 2-3.

Listing 2-3. The SQL*Plus LIST Command

SQL> L
 1 select *
 2* from employees

SQL>

41

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

The ability to retrieve the last SQL statement from the SQL buffer is often very useful when you need
to correct errors and re-execute the SQL statement. You will see how to do this in the subsequent
sections, where we’ll also discuss some other SQL*Plus commands related to the SQL buffer.

If you enter a second SQL command, the SQL buffer is overwritten, and you lose the previous SQL
command. In the “Saving Commands” section later in this chapter, you will see an easy method to save
SQL commands for reuse in SQL*Plus.

Note from the example in Listing 2-3 that the SQL command returned from the SQL buffer did not
include a semicolon at the end of it. The semicolon is not part of the SQL command itself, and it does not
end up in the SQL buffer. If you enter a SQL command (or even a portion of a SQL command) and press
the Enter key twice, without first adding a semicolon, the command will not be executed, but it will be
saved in the SQL buffer.

The SQL*Plus commands you enter are not stored in the SQL buffer. You can run as many SQL*Plus
commands as you like, but another SQL*Plus LIST command will display the same SQL command.

From the example in Listing 2-3, you can also note several other things about SQL*Plus commands:

� They are normally executed on a single line, unlike most SQL commands.

� You don’t need to enter a semicolon to execute SQL*Plus commands. They
execute immediately when you press the Enter key.

� SQL*Plus commands can be abbreviated (L stands for LIST), whereas SQL
commands cannot.

Rather than just see what is in the buffer, it is often useful to be able to edit its contents and then re-
execute the SQL, so let’s now move on to discuss how to do that.

Using an External Editor
You can edit the contents of the SQL buffer in two ways:

� Use an external editor of your choice

� Use the built-in SQL*Plus editor

The main advantage of the SQL*Plus editor is that its functionality is always available in SQL*Plus,
and the editor is totally independent of the underlying platform. The disadvantage of the SQL*Plus
editor is its lack of user-friendliness and its very limited capabilities. This section explains how to use an
external editor to edit your SQL commands. The next section will discuss the built-in SQL*Plus editor.

The default external editor under Microsoft Windows is Notepad.
You can also change or display the SQL*Plus external editor preference from the command line by

using the DEFINE command, as shown in Listing 2-4.

Listing 2-4. Displaying and Changing the External Editor Preference

SQL> define _editor=Notepad

SQL> define _editor
DEFINE _EDITOR = "Notepad" (CHAR)

SQL>

42

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

� Note The SQL*Plus variable that holds the name of the external editor is _editor, with a leading underscore in
its name.

You can invoke the external editor to change the contents of the SQL buffer. For this purpose, the
SQL*Plus command is EDIT. You can invoke the external editor only when your SQL buffer is not empty.
An empty buffer results in the error message “nothing to save.”

Invoking the external editor starts a subprocess, which means that you cannot return to SQL*Plus
until you have closed the external editor window. Alternatively, you may want to start a separate editor
session from the operating system (that is, not from SQL*Plus) so you can switch between two windows.
In that case, you must make sure to save the changes in your editor window before executing the
changed SQL command in SQL*Plus.

Using the SQL*Plus Editor
Learning to use the SQL*Plus editing commands is key to being more proficient and efficient in
scripting. Instead of starting over if you make a mistake entering a statement, you can make a quick edit
and then execute the statement. The editing commands are the same in all versions of SQL*Plus on all
platforms.

To explore the SQL*Plus editor, we begin with the same simple SQL SELECT command in the SQL
buffer (from the “Entering Commands” section earlier in the chapter):

SQL> select *
 2 from employees;

� Note Please follow all instructions in this section verbatim, even when you think there are some mistakes,
because any mistakes are intentional.

It is important to realize that the SQL*Plus editor is line-oriented; that is, there is only one current
line at any point in time. You can make changes only to that current line. (Perhaps you remember the
good old EDLIN editor under MS-DOS?)

SQL*Plus marks the current line on screen with an asterisk (*) after the line number. Normally, it is
the line you entered last; in our example, it is the second line.

If you want to change something on the first line, you must first activate that line with the L1
command. Let’s try to change the asterisk into two column names. C is an abbreviation for the SQL*Plus
command CHANGE. Listing 2-5 shows how to use the LIST and CHANGE commands to make this change.
SQL*Plus searches the current line for the first occurrence of an asterisk (*) and changes that character
into eename, bdate.

43

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Listing 2-5. Using the SQL*Plus LIST and CHANGE Commands

SQL> L
 1 select *
 2* from employees

SQL> L1
 1* select *

SQL> c/*/eename, bdate/
 1* select eename, bdate

SQL> L
 1 select eename, bdate
 2* from employees

SQL>

Instead of slashes (/), you can use any arbitrary character for the string delimiter (separator) in the

CHANGE command. Also, a space character between the C and the first separator is not mandatory, and
you can omit the last string delimiter too.

Now, let’s try to execute the SQL command in the buffer again. The SQL*Plus command to execute
the contents of the SQL buffer is RUN, abbreviated to R. Apparently we made a mistake; we get an Oracle
error message, as shown in Listing 2-6. Observe the error message. First, it shows a line number
indication (ERROR at line 1), and within that line, an asterisk (*) indicates the position where the error
was detected. Listing 2-6 also shows a first attempt to correct the error and the erroneous result of our
CHANGE command.

Listing 2-6. Fixing Typos with the SQL*Plus CHANGE Command

SQL> R
 1 select eename, bdate
 2* from employees
select eename, bdate
 *
ERROR at line 1:
ORA-00904: "EENAME": invalid identifier

SQL> c/e//
 1* slect eename, bdate

SQL>

We removed the first occurrence of an e on the first line, instead of the e in eename. This is the default

(and only) way the CHANGE command works. This means that you must be careful with this command
and be sure to specify appropriate search strings for replacement. In this case, it would have been better
to issue the c/ee/e/ command instead.

You can also add text at the end of the current line using the SQL*Plus APPEND command, which is
abbreviated A. Listing 2-7 shows how we can first fix the mistake, and then add one more column to the
SELECT expression.

44

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Listing 2-7. Appending Text with the SQL*Plus APPEND Command

SQL> L1
 1* slect eename, bdate

SQL> c/slect ee/select e/
 1* select ename, bdate

SQL> A , deptno
 1* select ename, bdate, deptno

SQL> L
 1 select ename, bdate, deptno
 2* from employees

SQL>

Note that the SQL*Plus APPEND command does not insert a space by default. In this case, we don’t

need a space, but otherwise you should specify a second space character after the APPEND command.
You can also add one or more additional lines to the SQL buffer with the SQL*Plus INPUT command

(abbreviated I), as shown in Listing 2-8. The lines you enter are added below the current line. If the
current line is the last line in the buffer, the new lines are added at the end of the statement. This also
means you need a “special trick” to add lines before the first line, as you’ll learn in the next section.
Notice the line numbering; SQL*Plus automatically generates appropriate line numbers while entering
text. You can stop entering additional lines by pressing the Enter key twice, or by entering a semicolon
when you are adding lines at the end of the buffer.

Listing 2-8. Inserting Text with the SQL*Plus INPUT Command

 1 select ename, bdate, deptno
 2* from employees

SQL> I
 3 where deptno = 30;

ENAME BDATE DEPTNO
-------- ----------- --------
ALLEN 20-FEB-1961 30
WARD 22-FEB-1962 30
MARTIN 28-SEP-1956 30
BLAKE 01-NOV-1963 30
TURNER 28-SEP-1968 30
JONES 03-DEC-1969 30

SQL>

45

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

� Note The I is an abbreviation for INPUT, not for INSERT. INSERT is a SQL command (to add rows to a table in
the database).

The SQL*Plus DEL command deletes the current line from the SQL buffer. You can optionally specify
a line number with the DEL command to remove a certain line from the SQL buffer without making that
line the current line first, or a range of line numbers to remove several lines with a single DEL command.
See Listing 2-9 for an example.

Listing 2-9. Deleting Lines with the SQL*Plus DEL Command

SQL> L
 1 select ename, bdate, deptno
 2 from employees
 3* where deptno = 30

SQL> DEL

SQL> L
 1 select ename, bdate, deptno
 2* from employees

SQL>

� Note DEL is not an abbreviation for DELETE, because DELETE is a SQL command (to remove rows from a table in
the database.)

Using SQL Buffer Line Numbers
You can make any line the current one by just entering the line number, without the L (LIST) command,
as shown in Listing 2-10.

Listing 2-10. Using Line Numbers to Change the Current Line

SQL> L
 1 select code, description
 2 from courses
 3* where category = 'DSG'

SQL> 2
 2* from courses

SQL> 42

46

 www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

SP2-0226: Invalid line number

SQL>

Using line numbers, you can also replace any line in the SQL buffer without needing to use the

SQL*Plus DEL command followed by a SQL*Plus INPUT command. Instead, simply enter the desired new
line preceded by its line number. Listing 2-11 shows how to replace the first line and add a line at the
end of the SQL buffer. Notice that the high line number (42) does not generate an error message, as it
does in the example in Listing 2-10.

Listing 2-11. Using Line Numbers to Change the SQL Buffer

SQL> 1 select *

SQL> L
 1 select *
 2 from courses
 3* where category = 'DSG'

SQL> 42 order by code

SQL> L
 1 select *
 2 from courses
 3 where category = 'DSG'
 4* order by code

SQL>

As explained earlier, the SQL*Plus INPUT command always inserts lines below the current line. The

trick to insert extra lines before the first line is to “overwrite” the artificial line zero, as demonstrated in
Listing 2-12. This is a rather trivial example; however, this trick can be quite useful when creating views.
Views are discussed in Chapter 10.

Listing 2-12. Inserting Text Before the First Line of the SQL Buffer

 1 select *
 2 from courses
 3 where category = ‘DSG’
 4* order by code

SQL> 0 /* this is just a comment */

SQL> L
 1 /* this is just a comment */
 2 select *
 3 from courses
 4 where category = 'DSG'
 5* order by code

SQL>

47

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Using the Ellipsis
If you are using the SQL*Plus CHANGE command, you might benefit from using three consecutive period
characters, also known as the ellipsis. The examples in Listings 2-13 and 2-14 demonstrate the effect of
using the ellipsis. First, we enter a new SQL command into the buffer and deliberately make a mistake.

Listing 2-13. Entering a SQL Command with a Deliberate Error

SQL> select mgr, department_name
 2 from departments
 3 where location = 'SCHIERMONNIKOOG';
select mgr, department_name
 *
ERROR at line 1:
ORA-00904: "DEPARTMENT_NAME": invalid identifier

SQL>

Normally, the last command line you entered into the SQL buffer is automatically the current line.

However, if an error condition occurs (such as in Listing 2-13), the line where the error is found becomes
the current line. This allows you to correct any mistakes with the SQL*Plus CHANGE command
immediately, without activating any line with the SQL*Plus LIST command. Listing 2-14 shows this
phenomenon; the asterisk in the L* command means to show the current line.

Listing 2-14. Using the SQL*Plus L* Command and the Ellipsis (. . .)

SQL> L*
 1* select mgr, department_name

SQL> c/d.../dname
 1* select mgr, dname

SQL> 3
 3* where location = 'SCHIERMONNIKOOG'

SQL> c/s...g/BOSTON
 3* where location = 'BOSTON'

SQL>

The last example in Listing 2-14 shows that all CHANGE command searches are case-insensitive. As

you can see, the ellipsis is powerful, but it’s also dangerous. For example, the command c/d.../dname
searches for the first occurrence of a d on the first line, and then replaces everything to the end of the
line.

SQL*Plus Editor Command Review
The SQL*Plus editor is a rather simple editor; nevertheless, it makes sense to spend some time to explore
its possibilities. It might come in handy when you need to work with the Oracle DBMS in an

48

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

environment that is completely unknown to you, or where you are not allowed to launch an external
editor from the underlying operating system. The SQL*Plus editor is always available, and it’s identical
on all platforms supported by Oracle.

Table 2-10 summarizes all the SQL*Plus editor commands covered in this chapter.

Table 2-10. Some SQL*Plus Editor-Related Commands

Command Description

LIST Show the complete SQL buffer

LIST n (or just n) Make line n the current line

CHANGE/old/new/ Change the first occurrence of old into new on the current line

APPEND txt Append txt to the end of the current line

INPUT Insert line(s) below the current line

DEL [x [y]] Without arguments: remove current line. One argument: remove that line.
Two arguments: remove range of lines (x and y can be line numbers, *, or
LAST)

RUN (or /) Execute the contents of the SQL buffer

EDIT Start an external editor on the current buffer contents

DEFINE _EDITOR Define your preferred external editor

As Table 2-10 shows, you can use the slash (/) command as an alternative for the SQL*Plus RUN

command. The difference between the two is that RUN always displays the SQL command and the results,
whereas the slash (/) command shows the results only.

Saving Commands
As explained earlier in the chapter, the SQL buffer is overwritten with every new SQL command you
enter in SQL*Plus. If you want to save the contents of the SQL buffer, you can use the SQL*Plus SAVE
command. The SAVE command creates a script file containing the contents of the SQL buffer.

If a script file already exists, you can specify (with the options APPEND or REPLACE) what you want the
SAVE command to do in that case. The APPEND option is useful if you want to save all your SQL commands
in one single file; for example, to print that file later.

Under Microsoft Windows, the options for saving the contents of the SQL buffer are also available
via the File pull-down menu of SQL*Plus, as shown in Figure 2-6.

49

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-6. The SQL*Plus options for saving the SQL buffer contents

As an example of saving SQL commands, enter the commands shown in Listing 2-15.

Listing 2-15. The SQL*Plus SAVE Command

SQL> save BLA

SQL> select * from departments;

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698
 40 HR BOSTON 7839

SQL> save BLI
Created file BLI.sql

SQL> select * from courses;

CODE DESCRIPTION CAT DURATION
---- ------------------------------ --- --------
SQL Introduction to SQL GEN 4
OAU Oracle for application users GEN 1
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
PMT Process modeling techniques DSG 1
RSD Relational system design DSG 2
PRO Prototyping DSG 5
GEN System generation DSG 4

10 rows selected.

50

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

SQL> save BLA
SP2-0540: File "BLA.sql" already exists.
Use "SAVE filename[.ext] REPLACE".

SQL> save BLA replace
Created file BLA.sql

SQL>

Note the error message after the second SAVE BLA attempt; REPLACE (or APPEND) is mandatory if a file

already exists.
We have created two script files. These script files get the extension .SQL by default. If you prefer to

use a different file name extension, you can change it with the SQL*Plus SUFFIX setting.

Running SQL*Plus Scripts
You can load script files saved with the SAVE command back into the SQL buffer with the GET command,
followed by the name of the script. For example, you might reload a script and then edit it. If you want to
load a script file and immediately execute it, you can use the START command (to get and run the script),
as shown in Listing 2-16.

Listing 2-16. Using the SQL*Plus GET and START Commands

SQL> GET BLA
 1* select * from courses

SQL> START BLI

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698
 40 HR BOSTON 7839

SQL>

Listing 2-17 shows that you can also use the @ shortcut for the SQL*Plus START command.

Listing 2-17. Using the SQL*Plus @ Command

SQL> L
 1* select * from departments

SQL> @BLA

CODE DESCRIPTION CAT DURATION
---- ------------------------------ --- --------
SQL Introduction to SQL GEN 4

51

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

OAU Oracle for application users GEN 1
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
PMT Process modeling techniques DSG 1
RSD Relational system design DSG 2
PRO Prototyping DSG 5
GEN System generation DSG 4

10 rows selected.

SQL>

Specifying Directory Path Specifications
The SQL*Plus commands SAVE, GET, and START can handle full file name specifications, with directory
paths. In the absence of a directory path, these commands default to the current directory. In a
Microsoft Windows environment, it is relatively simple to define the directory (or folder) in which you
want SQL*Plus to start. This is one of the shortcut properties, which you can set in the Start In field of the
Properties dialog box, shown in Figure 2-7. Right-click the SQL*Plus icon and select Properties to open
this dialog box.

Figure 2-7. SQL*Plus shortcut properties

52

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Through the Properties dialog box, you can also simplify the process to start SQL*Plus by specifying
your username and password (such as book/book) in the Target field. In that case, the standard log on
dialog will be skipped. However, this is a security risk, because anyone with access to your keyboard for
more than two seconds will find out your database name and password.

� Tip Under Microsoft Windows, you can also set the SQLPATH Registry setting to define a default search path for
all files that cannot be found in the current directory. For example, you could have this Registry setting point to a
central directory where you maintain all your generic SQL scripts. Just open the Registry Editor with the REGEDIT
command and search for SQLPATH. Under other operating systems, check out the SQLPATH environment variable.

Adjusting SQL*Plus Settings
You can modify the behavior of SQL*Plus in numerous ways, based on SQL*Plus variables or settings.
This section provides some simple examples to give you an idea of how this works. Chapter 11 covers the
topic in more detail.

Listing 2-18 demonstrates using the SET command to change some SQL*Plus settings.

Listing 2-18. Changing SQL*Plus Settings with the SET Command

SQL> set pagesize 22
SQL> set pause "Hit [Enter]... "
SQL> set pause on

SQL> run
 1* select * from courses

Hit [Enter]...

The effect of changing the PAUSE and PAGESIZE settings as shown in Listing 2-18 is that SQL*Plus now

produces screen output per page, in this case, 22 lines at a time. The PAUSE setting is useful if the results
of your SQL commands don’t fit on your screen.

� Tip When using the PAUSE setting, don’t just switch it on or off; make sure to specify a prompt string, too.
Otherwise, SQL*Plus will just wait until you press the Enter key.

You can display the current values of SQL*Plus settings with the SHOW command, and you can revert
to the default behavior with the SET command. Listing 2-19 shows examples of using these commands.

53

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Listing 2-19. Displaying SQL*Plus Settings with the SHOW Command

SQL> show pages
pagesize 22

SQL> show pause
PAUSE is ON and set to "Hit [Enter]... "

SQL> set pause off

SQL> show pause
PAUSE is OFF

SQL>

Although we are discussing the SQL*Plus tool in this section, there is also another (client tool-

independent) way to influence your database session behavior: by using the SQL command ALTER
SESSION. With this command, you can set several NLS (National Language Support) session parameters,
a selection of which are shown in Table 2-11.

Table 2-11. Examples of NLS Session Parameters

Parameter Description

NLS_DATE_FORMAT Default format to display dates

NLS_TIME_FORMAT Default format to display timestamps

NLS_LANGUAGE The language for SQL*Plus feedback and messages

NLS_NUMERIC_CHARACTERS The decimal point and group separator characters

NLS_CURRENCY The currency symbol

The most important parameter in this list is probably NLS_DATE_FORMAT, because this parameter

influences the way date values are interpreted and displayed by your session, which is often a source of
confusion. Listing 2-20 shows an example of using the ALTER SESSION command to set some NLS session
parameters.

Listing 2-20. Changing NLS Parameters with ALTER SESSION

SQL> alter session
 2 set nls_date_format='dd-mm-yyyy'
 3 nls_language=Dutch
 4 nls_currency='Eur';

Sessie is gewijzigd.

SQL>

54

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

If you change settings with the ALTER SESSION command, or if you change certain SQL*Plus settings
with the SQL*Plus SET command, you lose these changes as soon as you log off. On startup, SQL* Plus
will use the default values again. If you want to avoid the hassle of applying the same changes over and
over again, you can store these SQL and SQL*Plus commands in a file with the special name login.sql.
This file is automatically executed when you start SQL*Plus, or even when you change connections
within a SQL*Plus session with the CONNECT command. Note that SQL*Plus must be able to find this file
in the directory it starts in or via the SQLPATH Registry setting. login.sql is an example of a SQL*Plus
script. We will revisit this type of file in more detail in Chapter 11.

If the rows of a result table don’t fit on a single line on your screen (and the line wrapping makes the
result rather ugly), a solution might be to narrow the display of one or more columns with the SQL*Plus
COLUMN command. By default, SQL*Plus displays all columns on the screen with a width derived from the
corresponding column definitions found in the data dictionary. Listing 2-21 shows how you can narrow
(or widen) the display of alphanumeric columns on your screen by using the FORMAT option of the COLUMN
command.

Listing 2-21. Changing the Width of Alphanumeric Columns

SQL> select * from courses
 2 where category = 'BLD';

CODE DESCRIPTION CAT DURATION
---- ------------------------------ --- --------
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2

SQL> COLUMN description FORMAT a26
SQL> /

CODE DESCRIPTION CAT DURATION
---- -------------------------- --- --------
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2

SQL>

All SQL*Plus commands (and their optional components) can be abbreviated, as long as the

abbreviation is unique. For example, the COLUMN command can be abbreviated to COL, and FORMAT can be
abbreviated to FOR (see Listing 2-22).

You can influence the width of numeric columns in a similar way, as you can see in Listing 2-22.

Listing 2-22. Changing the Display of Numeric Columns

SQL> select * from salgrades
 2 where grade > 3;

55

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- -----
 4 2001 3000 200
 5 3001 9999 500

SQL> COL bonus FOR 9999.99
SQL> /

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- --------
 4 2001 3000 200.00
 5 3001 9999 500.00

SQL>

If you want to save all your current SQL*Plus settings in a file (a SQL*Plus script file), use the STORE

SET command. See Listing 2-23 for the syntax of this command.

Listing 2-23. SQL*Plus STORE SET Command Syntax

SQL> STORE SET <filename>[.sql] [REPLACE|APPEND]

The brackets in Listing 2-23 (around .sql and REPLACE|APPEND) are part of a common syntax

notation convention to denote optional command clauses. This convention is also used in Appendix A of
this book. In this convention, a vertical bar (|) can be used to separate optional choices, as in
[REPLACE|APPEND]. Uppercase components such as SET and APPEND should be entered verbatim;
lowercase components (such as <filename>) should be replaced (in this case) by a file name of your own
choice. See Appendix A for more details.

If you have saved all SQL*Plus settings in a script file by using the STORE SET command, you can
restore those settings at any time using the START (or @) command. This allows you to write SQL*Plus
scripts that capture all SQL*Plus settings at the beginning, change various settings during script
execution, and then restore the original settings at the end of the script.

Spooling a SQL*Plus Session
You can record the complete results (as displayed on your screen) of a SQL*Plus session in an operating
system file, using the SQL*Plus SPOOL command. Listing 2-24 shows an example.

Listing 2-24. Using the SQL*Plus SPOOL Command

SQL> spool BLA.TXT [create|replace|append]
SQL> select * from employees;
...
SQL> select * from departments;
...
SQL> spool off

The BLA.TXT file, created in the same directory or folder where the SAVE command stores its script

files, now contains a complete copy of all screen output. As Listing 2-24 shows, you can influence the

56

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

behavior of the SPOOL command by specifying one of the following keywords: CREATE, REPLACE, or APPEND.
With these three options, you can specify which behavior you want in case the specified file already
exists. Just try these options for yourself; the error messages are self-explanatory.

Describing Database Objects
When formulating SQL commands, it is sometimes convenient to get a quick overview of the structure of
a table; for example, to see the column names and the datatypes. In such cases, the SQL*Plus DESCRIBE
command is what you need. See Listing 2-25 for an example.

Listing 2-25. The SQL*Plus DESCRIBE Command

SQL> descr employees

 Name Null? Type
 ----------------------------- -------- --------------------
 EMPNO NOT NULL NUMBER(4)
 ENAME NOT NULL VARCHAR2(8)
 INIT NOT NULL VARCHAR2(5)
 JOB VARCHAR2(8)
 MGR NUMBER(4)
 BDATE NOT NULL DATE
 MSAL NOT NULL NUMBER(6,2)
 COMM NUMBER(6,2)
 DEPTNO NUMBER(2)

SQL>

Executing Commands from the Operating System
The HOST command (most implementations support a platform-specific shortcut, such as $ or !) allows
you to execute commands at the underlying operating system; for example, on a Microsoft Windows
system, a command window is opened. Depending on the underlying operating system, you can finish
the subsession and return to your SQL*Plus session with EXIT, LOGOUT, or a similar command.

Clearing the Buffer and the Screen
With the CLEAR BUFFER command, you can empty the SQL buffer in SQL*Plus. This is something you
won’t need to do too often, because the SQL buffer is overwritten each time by consecutive commands.

With the CLEAR SCREEN command, you can start at the top of a new, empty SQL*Plus screen.

SQL*Plus Command Review
Table 2-12 shows an overview of all SQL*Plus commands covered in this chapter (including the SQL*Plus
editor commands already listed in Table 2-10).

57

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-12. Some SQL*Plus Commands

Command Description

SAVE Save the SQL buffer contents in a script file

GET Read a saved script file back into the SQL buffer

START or @ Execute the contents of a script file

SPOOL Copy all screen output to a file

SET Change a SQL*Plus setting

SHOW Show the current value of SQL*Plus settings

COLUMN ... FORMAT Change screen display attributes of a column

STORE SET Save the current SQL*Plus settings in a script file

DESCRIBE Provide a description of a database object

HOST or $ Start a subsession at the operating system level

CLEAR BUFFER Empty the SQL buffer

CLEAR SCREEN Start with an empty SQL*Plus screen

We also introduced the following SQL command in this section:

� ALTER SESSION changes various settings for your session, such as NLS settings.

2.4 Introduction to SQL Developer
SQL Developer is the Graphical User Interface (GUI) tool that Oracle supplies to query the database,
explore objects, run reports, and run scripts. It runs on Windows, Linux and Mac OSX. It can be used to
access Oracle databases 9i, 10g, and 11g, as well as other databases such as Times Ten, Microsoft Access,
MySQL and SQL Server.

Installing and Configuring SQL Developer
SQL Developer is included as part of Oracle Database 11g. You can also download it from the following
URL:

http://www.oracle.com/technology/products/database/sql_developer/index.html.

58

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Once you save the downloaded archive and extract it to a directory, double click on sqldeveloper.exe
to start SQL Developer.

� Note SQL Developer for Windows does not create any menu shortcuts or icons on the desktop. You need to
create these manually if you want them. Create a desktop shortcut by right clicking on the file and selecting Send
To � Desktop (create shortcut). SQL Developer also does not create any registry entries. Thus, uninstalling SQL
Developer is as simple as deleting the SQL Developer directory that you created when you unpacked the archive.

One of the first tasks that you may be prompted to do when you start SQL Developer for the first
time is to locate the Java Development Kit (JDK). If you selected the option to download SQL Developer
with the JDK, then java.exe will be included. In this example, SQL Developer is installed in
C:\oracle\product\sqldeveloper and the location of the JDK will be in the subdirectory structure show in
Figure 2-8.

Figure 2-8. SQL Developer java.exe location

When SQL Developer first starts, the Start Page shown in Figure 2-9 opens. This page includes links
to documentation, to tutorials, and to the SQL Developer Forum.

59

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

� Note As SQL Developer is a non-licensed (free) product, support is not obtained through Oracle’s Metalink site.
The SQL Developer Forum on Oracle Technet (http://www.oracle.com/technology/index.html) is the location
for support and questions. When you have questions or issues, look there for assistance.

Figure 2-9. The SQL Developer start page

There is not a great deal of basic configuration for SQL Developer that you need to do at this time.
The ‘out of the box’ settings are fairly good for most users, but there are a couple of items that are worth
considering: setting the default script file location and disabling default extensions.

It is usually a good idea to specify the default location for saving and running scripts. One minor
annoyance with SQL Developer is that the settings for the file locations are spread among several
different dialogs. Select Tools � Preferences to bring up the Preferences dialog box, as shown in Figure
2-10. To set the Script location, select Databases � Worksheet and enter the preferred location for scripts
in the ‘Select default path to look for scripts’ box.

60

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-10. Setting the default script location

A second task is to disable some of the extensions that you do not need at this time. The advantage
is reducing the start time for SQL Developer. For this book, you don’t need any of the extensions, so
unselect them all. You will be prompted for a restart. You should notice that SQL Developer restarts
considerably faster than it did when you first started it.

Connecting to a Database
Unlike SQL*Plus, you do not have to enter your username, password, and database name every time you
connect. With SQL Developer you can have multiple connections that can be saved and organized. If you
are using multiple accounts for a single database, you can have a connection created for each of those
accounts.

� Note You can have multiple connections open at one time, but be careful when one of those connections is to a
production database. Two common problems leading to the need for database recovery are when a table is
accidently dropped and when data is mistakenly modified in production.

To create a new connection, click on the Connections tab to make it active and then click on the
large green cross (+) in the upper left corner. You can also right click on the Connections icon and select

61

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

New Connection. This will bring up the New / Select Database Connection dialog as seen in Figure 2-11.
In this example, the connection is the book user to a local database.

Figure 2-11. Creating a database connection

To organize your connections, you can create folders and add them to folders. You could organize

by database name, type, and location, or any meaningful criteria. There is no option to create a new
folder, so you add a connection to a new folder. Right click on the connection, select Add to Folder, and
if there aren’t any folders defined you will only have the New Folder option. Enter a folder name in the
dialog box. If folders have already been defined, you have the option to add to an existing folder or create
a new folder. For existing folders, you can drag and drop the connection onto a folder name to assign it
to that folder.

Exploring Objects
SQL Developer includes an Object Browser, which enables you to see the tables, indexes, procedures
that you own and have access to query or execute. Figure 2-12 shows how to look at the table definition.

The tabs on the table object window enable you to see additional details about the object. There are
two tabs that deserve special mention, Data and SQL. The Data tab will display the actual data in the table,
which is like doing a select * from table_name. The Data tab is also part of the View object window. The
SQL tab, which is in every object window, displays the actual SQL calls to create the object. Figure 2-13
shows the data in the employees table that is displayed by clicking the Data tab.

You can also explore the objects owned by others that you are able to access. At the very bottom of
the object list, the Other Users entry can be expanded to show all of the objects you can access. All the
users in the database are displayed, even if you cannot see any of their objects.

62

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-12. Browsing a table

Entering Commands
The SQL Worksheet is where you enter commands to query and modify data. Like SQL*Plus, you can
enter SQL and PL/SQL commands. Some SQL*Plus commands are supported, such as COLUMN, DESCRIBE
and SPOOL. For a full list of supported and unsupported SQL*Plus commands, please refer to the Oracle
SQL Developers User’s Guide.

The Worksheet is automatically opened when you connect to a database. If you need to open
another worksheet or have closed the only one open, click on the SQL Worksheet icon or select the Tools
�SQL Worksheet menu option.

� Note If the Worksheet contains more than one statement, the statements must be terminated with a ; or / (on
a separate line). If they are not properly terminated, the session will return an error message “ORA-00933: SQL
command not properly ended”.

63

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-13. Browsing a table’s data

Run Statement
Unlike SQL*Plus, a statement is not automatically run when you enter a ; or /. The Run Statement (F9)
command or the large green triangle icon is used to run a single command. If the worksheet contains
more than one command, Run Statement will run the command immediately after the selected line,
assuming that the previous statement(s) have been terminated with a ; or /.

Let’s start by entering the following, simple statement:

SELECT * FROM EMPLOYEES;

There are two things worth noting: First, the SQL statement reserved words are highlighted; second,

EMPLOYEES is suggested as the table after you type FROM E. The syntax highlighting is handy when you
accidentally type FORM instead of FROM. The auto-complete feature is also a time saver as it can suggest
table or view and column names.

Click on the Run Statement button or press F9 to execute the query and display the data in the
Query Result window, as seen in Figure 2-14.

64

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-14. Querying EMPLOYEES table

To change the sort order of the data, double click on a column heading in the Query Result window.

Run Script
The Run Script command will run all the statements and/or SQL*Plus commands in the worksheet. This
is the command to use when you have multiple statements or want to format the output using
supported SQL*Plus commands.

Below the SELECT * FROM EMPLOYEES; we entered in the worksheet, enter SELECT * FROM
DEPARTMENTS; and then click the Run Script button or press F5. The output will be displayed in the
Script Output window alongside the Query Result window. Notice that the output is almost identical to
what you have seen in SQL*Plus and is displayed below in Figure 2-15.

65

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-15. Querying EMPLOYEES and DEPARTMENTS tables

When running scripts, the output is appended to the Script Output window. To clear the window so

that only new output is displayed, click on the Clear button (the picture of the pencil eraser).

� Note Not all supported SQL*Plus commands are properly interpreted for Run Script. For example, the COLUMN
command did not change the column headings, but SET FEEDBACK OFF worked as expected.

Saving Commands to a Script
After taking time to create a complex statement, it is wise to save that command to a script that you can
run later. After entering the commands and statement(s), select File � Save, press CTL+S, or click on the
disk button to bring up the File Save dialog box. The directory that it opens should be the same one you
set in the Configuration section. The File Save dialog box is shown in Figure 2-16.

66

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-16. Saving employees.sql

Running a Script
To run the script we just saved, there are two ways to load and run. The SQL*Plus standard of using @ is
supported. To use the @ command, type @employees.sql in the worksheet and select Run Script (F5).
This is demonstrated in Figure 2-17.

The second option is to select File � Open and pick the employees.sql file you just saved. The
commands contained in that file will be loaded into the worksheet. Select the database connection you
want to use in the Choose db Connection drop down box in the upper right of the employees.sql
window. Until you select the connection, the other buttons will remain grayed out. After you select the
connection, press the Run Script button to see the output, as seen in Figure 2-18.

67

CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-17. Running employees.sql using @

We have just touched on the features of SQL Developer. For further information, visit the SQL
Developer home page at:
http://www.oracle.com/technology/products/database/sql_developer/index.html.

In Chapter 11, we will revisit SQL*Plus to cover some more advanced features that are useful in
writing scripts to automate your work. In case you are curious about more SQL*Plus features, feel free to
visit the Oracle online documentation or refer to the quick reference in Appendix A of this book.

68

 CHAPTER 2 � INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

69

Figure 2-18. Running employees.sql using File Load

C H A P T E R 3

� � �

Data Definition, Part I

This short chapter is the first one about data definition with SQL. It’s intended to get you started using
SQL for data retrieval as soon as possible. Therefore, this chapter covers only the data definition basics,
such as how to create simple tables using standard datatypes. In Chapter 7, we will revisit data definition
with SQL and explore topics such as indexes, synonyms, and constraints.

This chapter is mainly theoretical in nature in that it still offers no hands-on exercises and only a few
examples. In the next chapter, you will start writing SQL commands yourself.

The first section introduces the concept of database schemas and database users. In an Oracle
database, tables always belong to a schema, and, in general, a schema has a database user as its owner.
The second section explains how you can create simple tables, and the most common Oracle datatypes
are covered in the third section. To illustrate the contents of the first three sections, the fourth section
shows the CREATE TABLE commands to create the sample tables used in the examples in this book
(introduced in the previous chapter), without bothering about constraints yet.

The last section of this chapter covers the Oracle data dictionary. It provides a global overview of the
data dictionary, lists some typical examples of data dictionary tables, and shows how to execute some
simple queries against some of those data dictionary tables.

3.1 Schemas and Users
Before you can start creating and populating tables with SQL, you need to understand how data stored
in an Oracle database is organized internally. In the previous chapter, you learned that you cannot do
anything in an Oracle database if you do not identify yourself first by specifying a username and a
password. This process identifies you as a certain database user.

In an Oracle database there is, in general, a one-to-one relationship between database users and
database schemas with the same name. Briefly, these are the differences between a database user and a
database schema:

� A database user has a password and certain database privileges.

� A database schema is a logical collection of database objects (such as tables,
indexes, views, and so on) that is usually owned by the user of the same name.

Normally, when you log on to an Oracle database, you are automatically connected with the
corresponding database schema with the same name. However, it is also possible that certain database
users don’t have their own schema; in other words, they don’t have any database objects of their own,
and they don’t have the privileges to create them either. These “schema-less” users are, for example,
authorized only to retrieve or manipulate data in a different database schema.

For example, in SQL*Plus, you can use the CONNECT command to establish a new connection with a
different schema, provided you are able to enter a valid combination of a database name and a

71

CHAPTER 3 � DATA DEFINITION, PART I

corresponding password. With the ALTER SESSION SET CURRENT_SCHEMA command, you can “visit” a
different schema in SQL*Plus without changing your identity as database user, and therefore without
changing any of your privileges.

All of the examples and exercises in this book assume the presence of a database user BOOK, with the
password BOOK, and a schema BOOK that contains the seven case tables introduced in the previous
chapter. You can find all of the scripts to create the BOOK schema, to create the seven tables, and to insert
the rows in the Book Resources section of this book’s catalog page on the Apress website
[http://apress.com/book/view/1430271970].

3.2 Table Creation
The SQL command to create tables is CREATE TABLE. If you create a table, you must specify a name for the
new table, followed by a specification of all table columns. The columns must be specified as a comma-
separated list between parentheses. You might also create a new table by inheriting properties from an
existing one.

� Note The right to create tables in an Oracle database is not granted to everyone; you need some additional
system privileges. If you get error messages when you try to create tables, contact your database administrator or
check Oracle Database Administrator’s Guide in the online documentation.

The basic syntax of the CREATE TABLE command is shown in Figure 3-1.

Figure 3-1. A CREATE TABLE basic command syntax diagram

� Note Figure 3-1 does not show the complete syntax of the CCREATE TABLE command. Just for fun, check out
Oracle SQL Reference for the amount of documentation describing the CREATE TABLE command. Chapter 7 of this
book will revisit this command with the full syntax and more details.

Column specifications normally consist of several components. Figure 3-2 shows the column
specification syntax.

72

 CHAPTER 3 � DATA DEFINITION, PART I

Figure 3-2. Column specification syntax diagram

Each column specification starts with a column name, followed by the datatype (discussed in the
next section). If you add the optional expression NNOT NULL to a column definition, each future row of the
table you are creating must have a value specified for this column, and you will not be able to update
future rows by removing a value for this column. In other words, you define the column to be a
mandatory attribute.

The NOT NULL addition is an example of a constraint. You can specify many additional constraints in
the CREATE TABLE command. The other types of constraints are UNIQUE, CHECK, PRIMARY KEY, and FOREIGN
KEY. Chapter 7 will discuss these options of the CREATE TABLE command.

3.3 Datatypes
Oracle supports many standard datatypes, as you will see if you take a look at the Oracle documentation.
Some Oracle datatypes look very similar; some are even synonyms for each other. These datatypes are
supported for compatibility purposes of Oracle with other DBMSs or with the ANSI/ISO SQL standard.
For example, INT and INTEGER are synonyms for NUMBER(38). Some datatypes are very specific in nature,
making them irrelevant for us at this point in time. This section covers only the most common and
widely used Oracle datatypes.

In general, there are three categories of column data: numbers (numeric data), text (alphanumeric
data), and time-related data. The most important corresponding Oracle datatypes are NUMBER, VARCHAR or
VARCHAR2, and DATE, respectively.

Table 3-1 shows some examples of the NUMBER datatype.

Table 3-1. NUMBER Datatype Examples

Example Description

NUMBER(4) An integer with a maximum length of four digits

NUMBER(6,2) A number with a maximum precision of six digits; at most two digits behind the
decimal point

NUMBER(7,-3) A multiple of thousand with at most seven digits

NUMBER Identical to NUMBER(38,*)

NUMBER(*,5) Identical to NUMBER(38,5)

Oracle offers a number of alphanumeric datatypes. Depending on the Oracle version you are using,

there are some differences due to the evolution of the ANSI/ISO SQL standard over the years. For
example, since Oracle7, the two datatypes VARCHAR and VARCHAR2 are identical, but this could change in a

73

CHAPTER 3 � DATA DEFINITION, PART I

future Oracle release. If you create a table and you use the VARCHAR datatype, the Oracle DBMS translates
VARCHAR to VARCHAR2 on the fly. Therefore, this book refers to only the VARCHAR2 datatype. In cases where
the maximum size of the VARCHAR2 datatype (4000) is insufficient for a specific column, you can use the
CLOB (Character Large OBject) datatype.

Table 3-2 shows some simple examples of character datatypes.

Table 3-2. Character Datatype Examples

Example Description

VARCHAR2 (25) Alphanumeric, variable length, up to 25 characters

CHAR (4) Alphanumeric, fixed length, four characters

CLOB Alphanumeric, larger than the maximum size of the VARCHAR2 datatype

Table 3-3 lists the maximum size values for the datatypes mentioned so far.

� Note The actual units of measure used for the size of CHAR and VARCHAR2 datatypes depend on character
semantics (bytes or characters). See Chapter 7 for details.

Table 3-3. Maximum Datatype Sizes

Datatype Maximum Size

NUMBER 38 digits precision

CHAR 2000

VARCHAR2 4000

CLOB 4GB

� Note The indicated maximum CLOB size (4GB) is not completely correct. Depending on some configuration
parameters, CLOB columns may contain much more than 4GB worth of data. Refer to Oracle SQL Reference for
details.

74

 CHAPTER 3 � DATA DEFINITION, PART I

The basic datatype for time-related data is DATE. By default, date values are interpreted and
displayed according to a standard date format, typically showing only the day, the month, and the last
two digits of the year. You can change the default date format for your session or use conversion
functions in your SQL commands to display dates in different ways. Internally, Oracle stores dates in
such a way that DATE column values are allowed from the year 4712 BC until the year 9999. Oracle dates
are internally stored with much more precision than you might expect on first consideration.

� Caution DATE columns also contain a time indication (hours, minutes, and seconds), which may cause
problems when comparing two dates. For example, seemingly equal dates could be different due to their invisible
time components.

Apart from the DATE datatype, Oracle also supports the related datatypes TIMESTAMP (with or without
TIME ZONE) and INTERVAL to store other time-related data in table columns. Chapter 7 provides more
details on the time-related datatypes.

This book focuses on the usage of the three standard Oracle datatypes: NUMBER, VARCHAR2, and DATE.

3.4 Commands for Creating the Case Tables
This section lists the SQL commands to create the seven case tables introduced in Chapter 1, as an
illustration of the concepts covered in the previous three sections, without much additional explanation.
Since the BOOK schema consists of seven tables, this section also shows seven CREATE TABLE commands,
presented in Listings 3-1 through 3-7.

� Note As mentioned earlier, constraint definition (and constraint checking) is not taken into consideration in this
chapter; therefore, the following listings do not show the complete commands to create the case tables.

Listing 3-1. The EMPLOYEES Table

create table EMPLOYEES
(empno number(4) not null
, ename varchar2(8) not null
, init varchar2(5) not null
, job varchar2(8)
, mgr number(4)
, bdate date not null
, msal number(6,2) not null
, comm number(6,2)

, deptno number(2));

75

CHAPTER 3 � DATA DEFINITION, PART I

Listing 3-2. The DEPARTMENTS Table

create table DEPARTMENTS
(deptno number(2) not null
, dname varchar2(10) not null
, location varchar2(8) not null
, mgr number(4));

Listing 3-3. The SALGRADES Table

create table SALGRADES
(grade number(2) not null
, lowerlimit number(6,2) not null
, upperlimit number(6,2) not null
, bonus number(6,2) not null);

Listing 3-4. The COURSES Table

create table COURSES
(code varchar2(6) not null
, description varchar2(30) not null
, category char(3) not null
, duration number(2) not null);

Listing 3-5. The OFFERINGS Table

create table OFFERINGS
(course varchar2(6) not null
, begindate date not null
, trainer number(4)
, location varchar2(8));

Listing 3-6. The REGISTRATIONS Table

create table REGISTRATIONS
(attendee number(4) not null
, course varchar2(6) not null
, begindate date not null
, evaluation number(1));

Listing 3-7. The HISTORY Table

create table HISTORY
(empno number(4) not null
, beginyear number(4) not null
, begindate date not null
, enddate date
, deptno number(2) not null
, msal number(6,2) not null
, comments varchar2(60));

76

 CHAPTER 3 � DATA DEFINITION, PART I

3.5 The Data Dictionary
If you are interested in knowing which tables are present in your database, which columns they have,
whether or not those columns are indexed, which privileges are granted to you, and similar information,
you should query the data dictionary. Another common term for data dictionary is catalog. By the way,
we already queried the data dictionary implicitly before, in Chapter 2, when using the SQL*Plus DESCRIBE
command; this command queries the data dictionary under the hood.

The data dictionary is more or less the internal housekeeping administration of Oracle. The data
dictionary stores information about the data, also referred to as metadata. The data dictionary is
automatically maintained by Oracle; therefore, the data dictionary is always up-to-date.

DBMSs - like Oracle - store data dictionary data in precisely the same way as they store “regular”
data: in tables. This is in compliance with Ted Codd’s rule 4 (see Chapter 1). The big advantage of this
approach is that you can use the SQL language to query data dictionary data in the same way that you
query ordinary data. In other words, if you master the SQL language, you need to know only the names
of the data dictionary tables and the names of their columns.

Data dictionary access is a potential security risk. That’s why the Oracle DBMS offers system
privileges and roles to regulate and protect access to the data dictionary. For example, there is a role
SELECT_CATALOG_ROLE, which contains all privileges that you need to be able to access the data dictionary
data. Listing 3-8 demonstrates how Oracle controls data dictionary access. The listing was generated
from SQL*Plus.

Listing 3-8. Needing the SELECT_CATALOG_ROLE Role

SQL> describe dba_sys_privs
ERROR:
ORA-04043: object "SYS"."DBA_SYS_PRIVS" does not exist

SQL> connect / as sysdba
Connected.

SQL> grant select_catalog_role to book;
Grant succeeded.

SQL> connect book/book
Connected.

SQL> desc dba_sys_privs
 Name Null? Type
 ----------------------------- -------- ---------------
 GRANTEE NOT NULL VARCHAR2(30)
 PRIVILEGE NOT NULL VARCHAR2(40)
 ADMIN_OPTION VARCHAR2(3)

SQL>

Although the information is stored in data dictionary tables, most of the time, you access data

dictionary views instead. On the other hand, views are tables anyway. See Chapter 10 for details about
views.

77

CHAPTER 3 � DATA DEFINITION, PART I

You can refer to Oracle Database Reference in the Oracle documentation to get a complete overview
of the Oracle data dictionary. Fortunately, the Oracle data dictionary contains a view that lists all Oracle
data dictionary views, with a short description of their contents. This view is called DICTIONARY; DICT is a
shorter synonym for the same view. Listing 3-9 shows an abbreviated version of the query results. It’s
abbreviated for a practical reason: the DICT view contains more than 600 rows!

Listing 3-9. Using the DICT View

select * from dict order by table_name;

TABLE_NAME COMMENTS
-------------------- --
ALL_ALL_TABLES Description of all object and relational
 tables accessible to the user
ALL_APPLY Details about each apply process that
 dequeues from the queue visible to the
 current user
...
USER_COL_COMMENTS Comments on columns of user's tables and
 views
USER_COL_PRIVS Grants on columns for which the user is
 the owner, grantor or grantee
...
V$TIMEZONE_NAMES Synonym for V_$TIMEZONE_NAMES
V$VERSION Synonym for V_$VERSION

610 rows selected.

Data dictionary view names typically have prefixes that suggest the existence of four main

categories. In Listing 3-9, you can see the ALL, USER, and V$ prefixes. The fourth common prefix is DBA.
The idea behind this is that, most of the time, you are interested in information about a certain
subcategory of database objects. By using the appropriate views, you automatically suppress
information that is not of interest to you. Also, depending on your database privileges, you will not be
allowed to use certain categories of data dictionary views. Table 3-4 lists the most common data
dictionary view name prefixes. (Note that not all data dictionary views have one of these prefixes.)

Table 3-4. Common Data Dictionary View Prefixes

Prefix Description

USER_... Information about your own objects

ALL_... Information about all objects you can access

DBA_... All information in the database; for database administrators only

[G]V$... Dynamic performance views; for database administrators only

78

 CHAPTER 3 � DATA DEFINITION, PART I

The dynamic performance views (those with a V$ or GV$ name prefix) are a special category. These
views are not based on database tables, but rather on information from other sources such as internal
memory structures. They are mainly relevant for, and accessible to, database administrators.

Most data dictionary view names give a clear indication of their contents; however, as a
consequence, some of these names are very long. That’s why some of the most popular data dictionary
views also have alternative (shorter) synonyms, such as CAT, OBJ, IND, TABS, and COLS. The CAT view is an
especially useful one, because it lists the objects in the current schema. Listing 3-10 shows an example of
using the CAT view with our BOOK schema.

Listing 3-10. Using the CAT View

select * from cat;

TABLE_NAME TABLE_TYPE
------------------------------ -----------
EMPLOYEES TABLE
DEPARTMENTS TABLE
SALGRADES TABLE
COURSES TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
HISTORY TABLE

Suppose you want to query a specific data dictionary view, and you don’t know the actual column

names of that view. In that case, you can use the SQL*Plus command DESCRIBE, just as you would do for
regular tables. As you can see in Listing 3-11, you can use the DESCRIBE command, or you can query the
data dictionary view DICT_COLUMNS.

Listing 3-11. Using the DESCRIBE Command and the DICT_COLUMNS View

describe ALL_USERS
 Name Null? Type
 USERNAME NOT NULL VARCHAR2(30)
 USER_ID NOT NULL NUMBER
 CREATED NOT NULL DATE

select column_name, comments
from dict_columns
where table_name = 'ALL_USERS';

COLUMN_NAME COMMENTS
--------------------------- -------------------------
USERNAME Name of the user
USER_ID ID number of the user
CREATED User creation date

Listing 3-12 shows a query against the NLS_SESSION_PARAMETERS view (NLS stands for National

Language Support). The result shows, for example, the NLS_DATE_FORMAT value used to display dates.

79

CHAPTER 3 � DATA DEFINITION, PART I

Listing 3-12. Using the NLS_SESSION_PARAMETERS View

select * from nls_session_parameters;

PARAMETER VALUE
----------------------- ----------------------
NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_NUMERIC_CHARACTERS .,
NLS_CALENDAR GREGORIAN
NLS_DATE_FORMAT DD-MON-YYYY
NLS_DATE_LANGUAGE AMERICAN
NLS_SORT BINARY
NLS_TIME_FORMAT HH.MI.SSXFF AM
NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM
NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR
NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR
NLS_DUAL_CURRENCY $
NLS_COMP BINARY
NLS_LENGTH_SEMANTICS BYTE
NLS_NCHAR_CONV_EXCP FALSE

The NLS features in Oracle are documented in great detail in the Globalization Support Guide in the

Oracle documentation set.
Table 3-5 lists a selection of useful Oracle data dictionary tables.

Table 3-5. Some Useful Oracle Data Dictionary Views

View Description

DICTIONARY Description of the data dictionary itself

DICT_COLUMNS Data dictionary column descriptions

ALL_USERS Information about all database users

ALL_INDEXES1 All indexes

ALL_SEQUENCES1 All sequences

ALL_OBJECTS1 All objects

ALL_SYNONYMS1 All synonyms

ALL_TABLES1 All tables

80

 CHAPTER 3 � DATA DEFINITION, PART I

81

ALL_VIEWS1 All views

USER_INDEXES2 Indexes

USER_SEQUENCES2 Sequences

USER_OBJECTS2 Objects

USER_SYNONYMS2 Synonyms

USER_TABLES2 Tables

USER_TAB_COLUMNS2 Columns

USER_VIEWS2 Views

USER_RECYCLEBIN Dropped objects

CAT Synonym for USER_CATALOG

COLS Synonym for USER_TAB_COLUMNS

DICT Synonym for DICTIONARY

DUAL Dummy table, with one row and one column

IND Synonym for USER_INDEXES

OBJ Synonym for USER_OBJECTS

SYN Synonym for USER_SYNONYMS

TABS Synonym for USER_TABLES

1 Accessible to the user
2 Owned by the user

Appendix A provides a more complete description of the data dictionary views, and Oracle Database
Reference provides all the details you need about the Oracle data dictionary.

C H A P T E R 4

� � �

Retrieval: The Basics

In this chapter, you will start to access the seven case tables with SQL. To be more precise, you will learn
how to retrieve data from your database. For data retrieval, the SQL language offers the SELECT
command. SELECT commands are commonly referred to as queries.

The SELECT command has six main clauses. Three of them—SELECT, WHERE, and ORDER BY—are
discussed in this chapter. Introduction of the remaining three clauses—FROM, GROUP BY, and HAVING—is
postponed until Chapter 8.

You can write queries as independent SQL statements, but queries can also occur inside other SQL
commands. These are called subqueries. This chapter introduces subqueries, and then in Chapter 9, we
will revisit subqueries to discuss some of their more advanced features.

Null values and their associated three-valued logic—SQL conditions have the three possible
outcomes of TRUE, FALSE, or UNKNOWN—are also covered in this chapter. A thorough understanding of null
values and three-valued logic is critical for anyone using the SQL language. Finally, this chapter presents
the truth tables of the AND, OR, and NOT operators, showing how these operators handle three-valued logic.

4.1 Overview of the SELECT Command
We start this chapter with a short recap of what we already discussed in previous chapters. The six main
clauses of the SELECT command are shown in Figure 4-1.

Figure 4-1. The six main clauses of the SELECT command

83

CHAPTER 4 � RETRIEVAL: THE BASICS

Figure 4-1 is identical to Figure 2-1, and it illustrates the following main syntax rules of the SELECT
statement:

� There is a predefined mandatory order of these six clauses.

� The SELECT and FROM clauses are mandatory.

� WHERE, GROUP BY, HAVING, and ORDER BY are optional clauses.

Table 4-1 is identical to Table 2-1, and it shows high-level descriptions of the main SELECT command
clauses.

Table 4-1. The Six Main Clauses of the SELECT Command

Component Description

FROM Which table(s) is (are) needed for retrieval?

WHERE What is the condition to filter the rows?

GROUP BY How should the rows be grouped/aggregated?

HAVING What is the condition to filter the aggregated groups?

SELECT Which columns do you want to see in the result?

ORDER BY In which order do you want to see the resulting rows?

According to the ANSI/ISO SQL standard, these six clauses must be processed in the following

order: FROM, WHERE, GROUP BY, HAVING, SELECT, ORDER BY. Note that this is not the order in which you must
specify them in your queries.

As mentioned in the introduction to this chapter, SQL retrieval statements (SELECT commands) are
commonly referred to as queries. In this chapter, we will focus on queries using three SELECT command
clauses:

� SELECT: With the SELECT clause of the SELECT command, you specify the columns
that you want displayed in the query result and, optionally, which column
headings you prefer to see above the result table. This clause implements the
relational projection operator, explained in Chapter 1.

� WHERE: The WHERE clause allows you to formulate conditions that must be true in
order for a row to be retrieved. In other words, this clause allows you to filter rows
from the base tables; as such, it implements the relational restriction operator. You
can use various operators in your WHERE clause conditions—such as BETWEEN, LIKE,
IN, CASE, NOT, AND, and OR—and make them as complicated as you like.

� ORDER BY: With the ORDER BY clause, you specify the order in which you want to see
the rows in the result of your queries.

The FROM clause allows you to specify which tables you want to access. In this chapter, we will work
with queries that access only a single table, so the FROM clause in the examples in this chapter simply

84

 CHAPTER 4 � RETRIEVAL: THE BASICS

specifies the table name. The FROM clause becomes more interesting when you want to access multiple
tables in a single query, as described in Chapter 8.

4.2 The SELECT Clause
Let’s start with a straightforward example of a SELECT command, shown in Listing 4-1.

Listing 4-1. Issuing a Simple SELECT Command

select * from departments;

 DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698
 40 HR BOSTON 7839

The asterisk (*) means to show all columns of the DEPARTMENTS table. Listing 4-2 shows a slightly

more complicated query that selects specific columns from the EMPLOYEES table and uses a WHERE clause
to specify a condition for the rows retrieved.

Listing 4-2. Selecting Specific Columns

select ename, init, job, msal
from employees
where deptno = 30;

ENAME INIT JOB MSAL
-------- ----- -------- --------
ALLEN JAM SALESREP 1600
WARD TF SALESREP 1250
MARTIN P SALESREP 1250
BLAKE R MANAGER 2850
TURNER JJ SALESREP 1500
JONES R ADMIN 800

Let’s look at the syntax (the statement construction rules of a language) of this statement more

closely. You have a lot of freedom in this area. For example, you can enter an entire SQL command in a
single line, spread a SQL command over several lines, and use as many spaces and tabs as you like. New
lines, spaces, and tabs are commonly referred to as white space. The amount of white space in your SQL
statements is meaningless to the Oracle DBMS.

85

CHAPTER 4 � RETRIEVAL: THE BASICS

� Tip It is a good idea to define some SQL statement layout standards and stick to them. This increases both the
readability and the maintainability of your SQL statements. At this point, our SQL statements are short and simple,
but in real production database environments, SQL statements are sometimes several pages long.

In the SELECT clause, white space is mandatory after the keyword SELECT. The columns (or column
expressions) are separated by commas; therefore, white space is not mandatory. However, as you can see
in Listing 4-2, spaces after the commas enhance readability.

White space is also mandatory after the keywords FROM and WHERE. Again, any additional white space
is not mandatory, but it might enhance readability. For example, you can use spaces around the equal
sign in the WHERE clause.

Column Aliases
By default, the column names of the table are displayed above your query result. If you don’t like those
names—for example, because they do not adequately describe the meaning of the column in the specific
context of your query—you can specify different result column headings. You include the heading you
want to appear, called a column alias, in the SELECT clause of your query, as shown in the example in
Listing 4-3.

Listing 4-3. Changing Column Headings

select ename, init, msal salary
from employees
where deptno = 30;

ENAME INIT SALARY
-------- ----- --------
ALLEN JAM 1600
WARD TF 1250
MARTIN P 1250
BLAKE R 2850
TURNER JJ 1500
JONES R 800

In this example, there is no comma between MSAL and SALARY. This small detail has a great effect, as

the result in Listing 4-3 shows: SALARY is used instead of MSAL as a column heading (compare this with the
result shown in Listing 4-2).

By the way, the ANSI/ISO SQL standard also supports the optional keyword AS between any column
name and its corresponding column heading (column alias). Using this keyword enhances readability.
In other words, you can also formulate the query in Listing 4-3 as follows:

select ename, init, msal AS salary
from employees
where deptno = 30;

86

 CHAPTER 4 � RETRIEVAL: THE BASICS

The DISTINCT Keyword
Sometimes, your query results contain duplicate rows. You can eliminate such rows by adding the
keyword DISTINCT immediately after the keyword SELECT, as demonstrated in Listing 4-4.

Listing 4-4. Using DISTINCT to Eliminate Duplicate Rows

select DISTINCT job, deptno
from employees;

JOB DEPTNO
-------- --------
ADMIN 10
ADMIN 30
DIRECTOR 10
MANAGER 10
MANAGER 20
MANAGER 30
SALESREP 30
TRAINER 20

8 rows selected.

Without the addition of DISTINCT, this query would produce 14 rows, because the EMPLOYEES table

contains 14 rows. Remove the keyword DISTINCT from the first line of the query in Listing 4-4, and then
execute the query again to see the difference.

� Note Using DISTINCT in the SELECT clause might incur some performance overhead, because the Oracle DBMS
must sort the result in order to eliminate the duplicate rows.

Column Expressions
Instead of column names, you can also specify column expressions in the SELECT clause. For example,
Listing 4-5 shows how you can derive the range of the salary grades in the SALGRADES table, by selecting
the difference between upper limits and lower limits.

Listing 4-5. Using a Simple Expression in a SELECT Clause

select grade, upperlimit - lowerlimit
from salgrades;

 GRADE UPPERLIMIT-LOWERLIMIT
-------- ---------------------
 1 500
 2 199

87

CHAPTER 4 � RETRIEVAL: THE BASICS

 3 599
 4 999
 5 6998

In the next example, shown in Listing 4-6, we concatenate the employee names with their initials

into a single column, and also calculate the yearly salary by multiplying the monthly salary with 12.

Listing 4-6. Another Example of Using Expressions in a SELECT Clause

select init||' '||ename name
, 12 * msal yearsal
from employees
where deptno = 10;

NAME YEARSAL
-------------------------------- --------
AB CLARK 29400
CC KING 60000
TJA MILLER 15600

Now take a look at the rather odd query shown in Listing 4-7.

Listing 4-7. Selecting an Expression with Literals

select 3 + 4 from departments;

 3+4

 7
 7
 7
 7

The query result might look strange at first; however, it makes sense when you think about it. The

outcome of the expression 3+4 is calculated for each row of the DEPARTMENTS table. This is done four
times, because there are four departments and we did not specify a WHERE clause. Because the expression
3+4 does not contain any variables, the result (7) is obviously the same for every department row.

The DUAL Table
It makes more sense to execute queries
such as the one shown in Listing 4-7 against a dummy table, with only one row and one column. You
could create such a table yourself, but the Oracle DBMS supplies a standard dummy table for this
purpose, named DUAL, which is stored in the data dictionary. Because the Oracle DBMS knows that the
DUAL table contains only one single row, you usually get better performance results by using the DUAL
table rather than a dummy table that you created yourself.

88

 CHAPTER 4 � RETRIEVAL: THE BASICS

� Tip In 10g and above, the Oracle DBMS treats the use of DUAL like a function call that simply evaluates the
expression used in the column list. This provides even better performance results than directly accessing the DUAL
table.

Listing 4-8 shows two examples of DUAL table usage. Note that the contents of this DUAL table are
totally irrelevant; you use only the property that the DUAL table contains a single row.

Listing 4-8. Using the DUAL Table

select 123 * 456 from dual;

 123*456

 56088

select sysdate from dual;

SYSDATE

05-SEP-2004

The second query in Listing 4-8 shows an example of using the system date. You can refer to the

system date in Oracle with the keyword SYSDATE. Actually, to be more precise, SYSDATE is a function that
returns the system date. These functions are also referred to as pseudo columns. See Appendix A of this
book for examples of other such pseudo columns.

Listing 4-9 shows an example of using SYSDATE to derive the age of an employee, based on the date of
birth stored in the BDATE column of the EMPLOYEES table.

Listing 4-9. Using the System Date

select ename, (sysdate-bdate)/365
from employees
where empno = 7839;

ENAME (SYSDATE-BDATE)/365
-------- -------------------
KING 51.83758

� Note The results of your queries using SYSDATE depend on the precise moment the command was run;
therefore, when you execute the examples, the results will not be the same as those shown in Listings 4-8
and 4-9.

89

CHAPTER 4 � RETRIEVAL: THE BASICS

Null Values in Expressions
You should always consider the possibility of null values occurring in expressions. In case one or more
variables in an expression evaluate to a null value, the result of the expression as a whole becomes
unknown. We will discuss this area of concern in more detail later in this chapter, in Section 4.9. As an
appetizer, look at the result of the query in Listing 4-10.

Listing 4-10. The Effect of Null Values in Expressions

select ename, msal, comm, 12*msal + comm
from employees
where empno < 7600;

ENAME MSAL COMM 12*MSAL+COMM
-------- -------- -------- ------------
SMITH 800
ALLEN 1600 300 19500
WARD 1250 500 15500
JONES 2975

As you can see, the total yearly salary (including commission) for two out of four employees is

unknown, because the commission column of those employees contains a null value.

4.3 The WHERE Clause
With the WHERE clause, you can specify a condition to filter the rows for the result. We distinguish simple
and compound conditions.

Simple conditions typically contain one of the SQL comparison operators listed in Table 4-2.

Table 4-2. SQL Comparison Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to (alternative syntax: !=)

Expressions containing comparison operators constitute statements that can evaluate to TRUE or

FALSE. At least, that’s how things are in mathematics (logic), as well as in our intuition. (In Section 4.9,

90

 CHAPTER 4 � RETRIEVAL: THE BASICS

you will see that null values make things slightly more complicated in SQL, but for the moment, we
won’t worry about them.)

Listing 4-11 shows an example of a WHERE clause with a simple condition.

Listing 4-11. A WHERE Clause with a Simple Condition

select ename, init, msal
from employees
where msal >= 3000;

ENAME INIT MSAL
-------- ----- --------
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

Listing 4-12 shows another example of a WHERE clause with a simple condition, this time using the <>

(not equal to) operator.

Listing 4-12. Another Example of a WHERE Clause with a Simple Condition

select dname, location
from departments
where location <> 'CHICAGO';

DNAME LOCATION
---------- --------
ACCOUNTING NEW YORK
TRAINING DALLAS
HR BOSTON

Compound conditions consist of multiple subconditions, combined with logical operators. In

Section 4.5 of this chapter, you will see how to construct compound conditions by using the logical
operators AND, OR, and NOT.

4.4 The ORDER BY Clause
The result of a query is a table; that is, a set of rows. The order in which these rows appear in the result
typically depends on two aspects:

� The strategy chosen by the optimizer to access the data

� The operations chosen by the optimizer to produce the desired result

This means that it is sometimes difficult to predict the order of the rows in the result. In any case,
the order is not guaranteed to be the same under all circumstances.

If you insist on getting the resulting rows of your query back in a guaranteed order, you must use the
ORDER BY clause in your SELECT commands. Figure 4-2 shows the syntax of this clause.

91

CHAPTER 4 � RETRIEVAL: THE BASICS

Figure 4-2. ORDER BY clause syntax diagram

As Figure 4-2 shows, you can specify multiple sort specifications, separated by commas. Each sort
specification consists of a column specification (or column expression), optionally followed by keyword
DDESC (descending), in case you want to sort in descending order. Without this addition, the default
sorting order is ASC (ascending). ASC is underlined in Figure 4-2 to denote that it is the default.

The column specification may consist of a single column name or a column expression. To refer to
columns in the ORDER BY clause, you can use any of the following:

� Regular column names

� Column aliases defined in the SELECT clause (especially useful in case of complex
expressions in the SELECT clause)

� Column ordinal numbers

Column ordinal numbers in the ORDER BY clause have no relationship with the order of the columns
in the database; they are dependent on only the SELECT clause of your query. Try to avoid using ordinal
numbers in the ORDER BY clause. Using column aliases instead increases SQL statement readability, and
your ORDER BY clauses also become independent of the SELECT clauses of your queries.

Listing 4-13 shows how you can sort query results on column combinations. As you can see, the
query result is sorted on department number, and then on employee name for each department.

Listing 4-13. Sorting Results with ORDER BY

select deptno, ename, init, msal
from employees
where msal < 1500
order by deptno, ename;

 DEPTNO ENAME INIT MSAL
-------- -------- ---- --------
 10 MILLER TJA 1300
 20 ADAMS AA 1100
 20 SMITH N 800
 30 JONES R 800
 30 MARTIN P 1250
 30 WARD TF 1250

Listing 4-14 shows how you can reverse the default sorting order by adding the DESC keyword to your

ORDER BY clause.

92

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-14. Sorting in Descending Order with ORDER BY ... DESC

select ename, 12*msal+comm as yearsal
from employees
where job = 'SALESREP'
order by yearsal desc;

ENAME YEARSAL
-------- --------
ALLEN 19500
TURNER 18000
MARTIN 16400
WARD 15500

When sorting, null values cause trouble (when don’t they, by the way?). How should columns with

missing information be sorted? The rows need to go somewhere, so you need to decide. You have four
options as to how to treat null values when sorting:

� Always as first values (regardless of the sorting order)

� Always as last values (regardless of the sorting order)

� As low values (lower than any existing value)

� As high values (higher than any existing value)

Figure 4-2 shows how you can explicitly indicate how to treat null values in the ORDER BY clause for
each individual column expression.

Let’s try to find out Oracle’s default behavior for sorting null values. See Listing 4-15 for a first test.

Listing 4-15. Investigating the Ordering of Null Values

select evaluation
from registrations
where attendee = 7788
order by evaluation;

EVALUATION

 4
 5

The null value in the result is tough to see; however, it is the third row. If you change the ORDER BY

clause to specify a descending sort, the result becomes as shown in Listing 4-16.

93

CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-16. Testing the Ordering of Null Values

select evaluation
from registrations
where attendee = 7788
order by evaluation DESC;

EVALUATION

 5
 4

Listings 4-15 and 4-16 show that Oracle treats null values as high values. In other words, the default

behavior is as follows:

� NULLS LAST is the default for ASC.

� NULLS FIRST is the default for DESC.

4.5 AND, OR, and NOT
You can combine simple and compound conditions into more complicated compound conditions by
using the logical operators AND and OR. If you use AND, you indicate that each row should evaluate to TRUE
for both conditions. If you use OR, only one of the conditions needs to evaluate to TRUE. Sounds easy
enough, doesn’t it?

Well, the fact is that we use the words and and or in a rather sloppy way in spoken languages. The
listener easily understands our precise intentions from the context, intonation, or body language. This is
why there is a risk of making mistakes when translating questions from a natural language, such as
English, into queries in a formal language, such as SQL.

� Tip It is not uncommon to see discussions (mostly after the event) about misunderstandings in the precise
wording of the original question in natural language. Therefore, you should always try to sharpen your question in
English as much as possible before trying to convert those questions into SQL statements. In cases of doubt, ask
clarifying questions for this purpose.

Therefore, in SQL, the meaning of the two keywords AND and OR must be defined very precisely,
without any chance for misinterpretation. You will see the formal truth tables of the AND, OR, and NOT
operators in Section 4.10 of this chapter, after the discussion of null values. First, let’s experiment with
these three operators and look at some examples.

The OR Operator
Consider the operator OR. We can make a distinction between the inclusive and the exclusive meaning of
the word. Is it okay if both conditions evaluate to TRUE, or should only one of the two be TRUE? In natural

94

 CHAPTER 4 � RETRIEVAL: THE BASICS

languages, this distinction is almost always implicit. For example, suppose that you want to know when
someone can meet with you, and the answer you get is “next Thursday or Friday.” In this case, you
probably interpret the OR in its exclusive meaning.

What about SQL—is the OR operator inclusive or exclusive? Listing 4-17 shows the answer.

Listing 4-17. Combining Conditions with OR

select code, category, duration
from courses
where category = 'BLD'
or duration = 2;

CODE CAT DURATION
---- --- --------
JAV BLD 4
PLS BLD 1
XML BLD 2
RSD DSG 2

In this example, you can see that the OR operator in SQL is inclusive; otherwise, the third row

wouldn’t show up in the result. The XML course belongs to the BLD course category (so the first condition
evaluates to TRUE) and its duration is two days (so the second condition also evaluates to TRUE).

Another point of note regarding the evaluation order for an OR operator is that conditions are
evaluated in order until a TRUE condition is found. All subsequent conditions are ignored. This is due to
the fact that for an OR operator to be satisfied, only one condition must evaluate to TRUE. So, even if you
had many OR conditions, evaluation will stop as soon as the first TRUE occurs.

In the upcoming discussion of the NOT operator, you will see how to construct an exclusive OR.

The AND Operator and Operator Precedence Issues
There is a possible problem if your compound conditions contain a mixture of AND and OR operators. See
Listing 4-18 for an experiment with a query against the DUAL table.

Listing 4-18. Combining Conditions with OR and AND

select 'is true ' as condition
from dual
where 1=1 or 1=0 and 0=1;

CONDITION

is true

The compound condition in Listing 4-18 consists of three rather trivial, simple conditions,

evaluating to TRUE, FALSE, and FALSE, respectively. But what is the outcome of the compound predicate as
a whole, and why? Apparently, the compound predicate evaluates to TRUE; otherwise, Listing 4-18 would
have returned the message “no rows selected.”

In such cases, the result depends on the operator precedence rules. You can interpret the condition
of Listing 4-18 in two ways, as follows:

95

CHAPTER 4 � RETRIEVAL: THE BASICS

1=1 OR ... If one of the operands of OR is true, the overall result is TRUE.

… AND 0=1 If one of the operands of AND is false, the overall result is FALSE.

Listing 4-18 obviously shows an overall result of TRUE. The Oracle DBMS evaluates the expressions in

the order that will require the fewest conditional checks. This decision is based on the demographics of
your data and is an advanced topic not covered in this book.

With compound conditions, it is always better to use parentheses to indicate the order in which you
want the operations to be performed, rather than relying on implicit language precedence rules. Listing
4-19 shows two variants of the query from Listing 4-18, using parentheses in the WHERE clause.

Listing 4-19. Using Parentheses to Force Operator Precedence

select 'is true ' as condition
from dual
where (1=1 or 1=0) and 0=1;

no rows selected

select 'is true ' as condition
from dual
where 1=1 or (1=0 and 0=1);

CONDITION

is true

� Caution Remember that you can use white space to beautify your SQL commands; however, never allow an
attractive SQL command layout (for example, with suggestive indentations) to confuse you. Tabs, spaces, and new
lines may increase statement readability, but they don’t change the meaning of your SQL statements in any way.

The NOT Operator
You can apply the NOT operator to any arbitrary condition to negate that condition. Listing 4-20 shows an
example.

96

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-20. Using the NOT Operator to Negate Conditions

select ename, job, deptno
from employees
where NOT deptno > 10;

ENAME JOB DEPTNO
-------- -------- --------
CLARK MANAGER 10
KING DIRECTOR 10
MILLER ADMIN 10

In this simple case, you could achieve the same effect by removing the NOT operator and changing

the comparison operator > into <=, as shown in Listing 4-21.

Listing 4-21. Equivalent Query Without Using the NOT Operator

select ename, job, deptno
from employees
where deptno <= 10;

ENAME JOB DEPTNO
-------- -------- --------
CLARK MANAGER 10
KING DIRECTOR 10
MILLER ADMIN 10

The NOT operator becomes more interesting and useful in cases where you have complex compound

predicates with AND, OR, and parentheses. In such cases, the NOT operator gives you more control over the
correctness of your commands.

In general, the NOT operator should be placed in front of the condition. Listing 4-22 shows an
example of illegal syntax and a typical error message when NOT is positioned incorrectly.

Listing 4-22. Using the NOT Operator in the Wrong Place

select ename, job, deptno
from employees
where deptno NOT > 10;
where deptno NOT > 10
 *
ERROR at line 3:
ORA-00920: invalid relational operator

There are some exceptions to this rule. As you will see in Section 4.6, the SQL operators BETWEEN, IN,

and LIKE have their own built-in negation option.

97

CHAPTER 4 � RETRIEVAL: THE BASICS

� Tip Just as you should use parentheses to avoid confusion with AND and OR operators in complex compound
conditions, it is also a good idea to use parentheses to specify the precise scope of the NOT operator explicitly. See
Listing 4-23 for an example.

By the way, do you remember the discussion about inclusive and exclusive OR? Listing 4-23 shows
how you can construct the exclusive OR in SQL by explicitly excluding the possibility that both conditions
evaluate to TRUE (on the fourth line). That’s why the XML course is now missing. Compare the result with
Listing 4-17.

Listing 4-23. Constructing the Exclusive OR Operator

select code, category, duration
from courses
where (category = 'BLD' or duration = 2)
and not (category = 'BLD' and duration = 2);

CODE CAT DURATION
---- --- --------
JAV BLD 4
PLS BLD 1
RSD DSG 2

Just as in mathematics, you can eliminate parentheses from SQL expressions. The following two

queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R')
select * from employees where ename <> 'BLAKE' OR init <> 'R'

In the second version, the NOT operator disappeared, the negation is applied to the two comparison

operators, and last, but not least, the AND changes into an OR. You will look at this logical equivalence in
more detail in one of the exercises at the end of this chapter.

4.6 BETWEEN, IN, and LIKE
Section 4.3 introduced the WHERE clause, and Section 4.5 explained how you can combine simple and
compound conditions in the WHERE clause into more complicated compound conditions by using the
logical operators AND, OR, and NOT. This section introduces three new operators you can use in simple
conditions: BETWEEN, IN, and LIKE.

The BETWEEN Operator
The BETWEEN operator does not open up new possibilities; it only allows you to formulate certain
conditions a bit more easily and more readably. See Listing 4-24 for an example.

98

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-24. Using the BETWEEN Operator

select ename, init, msal
from employees
where msal between 1300 and 1600;

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
TURNER JJ 1500
MILLER TJA 1300

This example shows that the BETWEEN operator includes both border values (1300 and 1600) of the

interval.
The BETWEEN operator has its own built-in negation option. Therefore, the following three SQL

expressions are logically equivalent:

where msal NOT between 1000 and 2000
where NOT msal between 1000 and 2000
where msal < 1000 OR msal > 2000

The IN Operator
With the IN operator, you can compare a column or the outcome of a column expression against a list of
values. Using the IN operator is also a simpler way of writing a series of OR conditions. Instead of writing
empno = 7499 OR empno = 7566 OR empno = 7788, you simply use an IN-list. See Listing 4-25 for an
example.

Listing 4-25. Using the IN Operator

select empno, ename, init
from employees
where empno in (7499,7566,7788);

 EMPNO ENAME INIT
-------- -------- -----
 7499 ALLEN JAM
 7566 JONES JM
 7788 SCOTT SCJ

Just like BETWEEN, the IN operator also has its own built-in negation option. The example in Listing 4-

26 produces all course registrations that do not have an evaluation value of 3, 4, or 5.

Listing 4-26. Using the NOT IN Operator

select * from registrations
where evaluation NOT IN (3,4,5);

99

CHAPTER 4 � RETRIEVAL: THE BASICS

ATTENDEE COUR BEGINDATE EVALUATION
-------- ---- --------- ----------
 7876 SQL 12-APR-99 2
 7499 JAV 13-DEC-99 2

Check for yourself that the following four expressions are logically equivalent:

where evaluation NOT in (3,4,5)
where NOT evaluation in (3,4,5)
where NOT (evaluation=3 OR evaluation=4 OR evaluation=5)
where evaluation<>3 AND evaluation<>4 AND evaluation<>5

A rather obvious requirement for the IN operator is that all of the values you specify between the

parentheses must have the same (relevant) datatype.

The LIKE Operator
You typically use the LIKE operator in the WHERE clause of your queries in combination with a search
pattern. In the example shown in Listing 4-27, the query returns all courses that have something to do
with SQL, using the search pattern %SQL%.

Listing 4-27. Using the LIKE Operator with the Percent Character

select * from courses
where description LIKE '%SQL%';

CODE DESCRIPTION TYP DURATION
---- ------------------------------ --- --------
SQL Introduction to SQL GEN 4
PLS Introduction to PL/SQL BLD 1

Two characters have special meaning when you use them in a string (the search pattern) after the

LIKE operator. These two characters are commonly referred to as wildcards:

%: A percent sign after the LIKE operator means zero, one, or more arbitrary
characters (see Listing 4-27).

_: An underscore after the LIKE operator means exactly one arbitrary character.

� Note If the LIKE operator (with its two wildcard characters) provides insufficient search possibilities, you can
use the REGEXP_LIKE function and regular expressions. See Chapter 5 for information about using regular
expressions.

The query shown in Listing 4-28 returns all employees with an uppercase A as the second character
in their name.

100

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-28. Using the LIKE Operator with the Percent and Underscore Characters

select empno, init, ename
from employees
where ename like '_A%';

 EMPNO INIT ENAME
-------- ----- --------
 7521 TF WARD
 7654 P MARTIN

Just like the BETWEEN and IN operators, the LIKE operator also features a built-in negation option; in

other words, you can use WHERE … NOT LIKE ….
The following queries show two special cases: one using LIKE without wildcards and one using the %

character without the LIKE operator.

select * from employees where ename like 'BLAKE'
select * from employees where ename = 'BL%'

Both queries will be executed by Oracle, without any complaints or error messages. However, in the

first example, we could have used the equal sign (=) instead of the LIKE operator to get the same results.
In the second example, the percent sign (%) has no special meaning, since it doesn’t follow the LIKE
operator, so it is very likely we would get back the “no rows selected” message.

If you really want to search for actual percent sign or underscore characters with the LIKE operator,
you need to suppress the special meaning of those characters. You can do this with the ESCAPE option of
the LIKE operator, as demonstrated in Listing 4-29.

Listing 4-29. Using the ESCAPE Option of the LIKE Operator

select empno, begindate, comments
from history
where comments like '%0\%%' escape '\';

 EMPNO BEGINDATE COMMENTS
-------- ----------- --
 7566 01-JUN-1989 From accounting to human resources; 0% salary change
 7788 15-APR-1985 Transfer to human resources; 0% salary raise

The WHERE clause in Listing 4-29 searches for 0% in the COMMENTS column of the HISTORY table. The

backslash (\) suppresses the special meaning of the second percent sign in the search string. Note that
you can pick a character other than the backslash to use as the ESCAPE character.

4.7 CASE Expressions
You can tackle complicated procedural problems with CASE expressions. Oracle supports two CASE
expression types: simple CASE expressions and searched CASE expressions.

Figure 4-3 illustrates the syntax of the simple CASE expression. With this type of CASE expression, you
specify an input expression to be compared with the values in the WHEN ... THEN loop. The implicit

101

CHAPTER 4 � RETRIEVAL: THE BASICS

comparison operator is always the equal sign. The left operand is always the input expression, and the
right operand is the value from the WHEN clause.

Figure 4-3. Simple CASE expression syntax diagram

Figure 4-4 shows the syntax of the searched CCASE expression. The power of this type of CASE
expression is that you don’t specify an input expression, but instead specify complete conditions in the
WHEN clause. Therefore, you have the freedom to use any logical operator in each individual WHEN clause.

Figure 4-4. Searched CASE expressions syntax diagram

CCASE expressions are evaluated as follows:

� Oracle evaluates the WHEN expressions in the order in which you specified them,
and returns the THEN result of the first condition evaluating to TRUE. Note that
Oracle does not evaluate the remaining WHEN clauses; therefore, the order of the
WHEN expressions is important.

� If none of the WHEN expressions evaluates to TRUE, Oracle returns the ELSE
expression.

� If you didn’t specify an ELSE expression, Oracle returns a null value.

Obviously, you must handle datatypes in a consistent way. The input expressions and the THEN
results in the simple CASE expression (Figure 4-3) must have the same datatype, and in both CASE
expression types (Figures 4-3 and 4-4), the THEN results should have the same datatype, too.

Listing 4-30 shows a straightforward example of a simple CASE expression, which doesn’t require any
explanation.

102

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-30. Simple CASE Expression Example

select attendee, begindate
, case evaluation
 when 1 then 'bad'
 when 2 then 'mediocre'
 when 3 then 'ok'
 when 4 then 'good'
 when 5 then 'excellent'
 else 'not filled in'
 end
from registrations
where course = 'S02';

ATTENDEE BEGINDATE CASEEVALUATIO
-------- --------- -------------
 7499 12-APR-99 good
 7698 12-APR-99 good
 7698 13-DEC-99 not filled in
 7788 04-OCT-99 not filled in
 7839 04-OCT-99 ok
 7876 12-APR-99 mediocre
 7902 04-OCT-99 good
 7902 13-DEC-99 not filled in
 7934 12-APR-99 excellent

Listing 4-31 shows an example of a searched CASE expression.

Listing 4-31. Searched CASE Expression Example

select ename, job
, case when job = 'TRAINER' then ' 10%'
 when job = 'MANAGER' then ' 20%'
 when ename = 'SMITH' then ' 30%'
 else ' 0%'
 end as raise
from employees
order by raise desc, ename;

ENAME JOB RAISE
-------- -------- -----
BLAKE MANAGER 20%
CLARK MANAGER 20%
JONES MANAGER 20%
ADAMS TRAINER 10%
FORD TRAINER 10%
SCOTT TRAINER 10%
SMITH TRAINER 10%
ALLEN SALESREP 0%
JONES ADMIN 0%
KING DIRECTOR 0%

103

CHAPTER 4 � RETRIEVAL: THE BASICS

MARTIN SALESREP 0%
MILLER ADMIN 0%
TURNER SALESREP 0%
WARD SALESREP 0%

In Listing 4-31, note that SMITH gets only a 10% raise, despite the fourth line of the query. This is

because he is a trainer, which causes the second line to result in a match; therefore, the remaining WHEN
expressions are not considered.

� Note CASE expressions may contain other CASE expressions. The only limitation is that a single CASE may have
a maximum of 255 conditional expressions. Even though you can create large CASE expressions, take care to not
use so many embedded conditions that your logic is hard to follow.

CASE expressions are very powerful and flexible; however, they sometimes become rather long.
That’s why Oracle offers several functions that you could interpret as abbreviations (or shorthand
notations) for CASE expressions, such as COALESCE and NULLIF (both of these functions are part of the
ANSI/ISO SQL standard), NVL, NVL2, and DECODE. We will look at some of these functions in the next
chapter.

4.8 Subqueries
Section 4.6 introduced the IN operator. This section introduces the concept of subqueries by starting
with an example of the IN operator.

Suppose you want to launch a targeted e-mail campaign, because you have a brand-new course that
you want to promote. The target audience for the new course is the developer community, so you want
to know who attended one or more build (BLD category) courses in the past. You could execute the
following query to get the desired result:

select attendee
from registrations
where course in ('JAV','PLS','XML')

This solution has at least two problems. To start with, you have looked at the COURSES table to check

which courses belong to the BLD course category, apparently (evidenced by the JAV, PLS, and XML in the
WHERE clause). However, the original question was not referring to any specific courses; it referred to BLD
courses. This lookup trick is easy in our demo database, which has a total of only ten courses, but this
might be problematic, or even impossible, in real information systems. Another problem is that the
solution is rather rigid. Suppose you want to repeat the e-mail promotion one year later for another new
course. In that case, you may need to revise the query to reflect the current set of BLD courses.

A much better solution to this problem is to use a subquery. This way, you leave it up to the Oracle
DBMS to query the COURSES table, by replacing the list of course codes between the parentheses (JAV, PLS,
and XML) with a query that retrieves the desired course codes for you. Listing 4-32 shows the subquery for
this example.

104

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-32. Using a Subquery to Retrieve All BLD Courses

select attendee
from registrations
where course in (select code
 from courses
 where category = 'BLD');

ATTENDEE

 7499
 7566
 7698
 7788
 7839
 7876
 7788
 7782
 7499
 7876
 7566
 7499
 7900

This eliminates both objections to the initial solution with the hard-coded course codes. Oracle first

substitutes the subquery between the parentheses with its result—a number of course codes—and then
executes the main query. (Consider “first substitutes ... and then executes ...” conceptually; the Oracle
optimizer could actually decide to execute the SQL statement in a different way.)

Apparently, 13 employees attended at least one build course in the past (see Listing 4-32). Is that
really true? Upon closer investigation, you can see that some employees apparently attended several
build courses, or maybe some employees even attended the same build course twice. In other words, the
conclusion about the number of employees (13) was too hasty. To retrieve the correct number of
employees, you should use SELECT DISTINCT in the main query to eliminate duplicates.

The Joining Condition
It is always your own responsibility to formulate subqueries in such a way that you are not comparing
apples with oranges. For example, the next variant of the query shown in Listing 4-33 does not result in
an error message; however, the result is rather strange.

Listing 4-33. Comparing Apples with Oranges

select attendee
from registrations
where EVALUATION in (select DURATION
 from courses
 where category = 'BLD');

105

CHAPTER 4 � RETRIEVAL: THE BASICS

ATTENDEE

 7900
 7788
 7839
 7900
 7521
 7902
 7698
 7499
 7499
 7876

This example compares evaluation numbers (from the main query) with course durations from the

subquery. Just try to translate this query into an English sentence…
Fortunately, the Oracle DBMS does not discriminate between meaningful and meaningless

questions. You have only two constraints:

� The datatypes must match, or the Oracle DBMS must be able to make them match
with implicit datatype conversion.

� The subquery should not select too many column values per row.

When a Subquery Returns Too Many Values
What happens when a subquery returns too many values? Look at the query in Listing 4-34 and the
resulting error message.

Listing 4-34. Error: Subquery Returns Too Many Values

select attendee
from registrations
where course in
 (select course, begindate
 from offerings
 where location = 'CHICAGO');
 (select course, begindate
 *
ERROR at line 4:
ORA-00913: too many values

The subquery in Listing 4-34 returns (COURSE, BEGINDATE) value pairs, which cannot be compared

with COURSE values. However, it is certainly possible to compare attribute combinations with subqueries
in SQL. The query in Listing 4-34 was an attempt to find all employees who ever attended a course in
Chicago.

In our data model, course offerings are uniquely identified by the combination of the course code
and the begin date. Therefore, you can correct the query as shown in Listing 4-35.

106

 CHAPTER 4 � RETRIEVAL: THE BASICS

Listing 4-35. Fixing the Error in Listing 4-34

select attendee
from registrations
where (course, begindate) in
 (select course, begindate
 from offerings
 where location = 'CHICAGO');

ATTENDEE

 7521
 7902
 7900

� Note Subqueries may, in turn, contain other subqueries. This principle is known as subquery nesting, and there
is no practical limit to the number of subquery levels you might want to create in Oracle SQL. But be aware that at
a certain level of nesting, you will probably lose the overview.

Comparison Operators in the Joining Condition
So far, we have explored subqueries with the IN operator. However, you can also establish a relationship
between a main query and its subquery by using one of the comparison operators (=, <, >, <=, >=, <>), as
demonstrated in Listing 4-36. In that case, there is one important difference: the subquery must return
precisely one row. This additional constraint makes sense if you take into consideration how these
comparison operators work: they are able to compare only a single left operand with a single right
operand.

Listing 4-36. Using a Comparison Operator in the Joining Condition

select ename, init, bdate
from employees
where bdate > (select bdate
 from employees
 where empno = 7876);

ENAME INIT BDATE
-------- ----- ---------
JONES JM 02-APR-67
TURNER JJ 28-SEP-68
JONES R 03-DEC-69

The query in Listing 4-36 shows all employees who are younger than employee 7876. The subquery

will never return more than one row, because EMPNO is the primary key of the EMPLOYEES table.

107

CHAPTER 4 � RETRIEVAL: THE BASICS

In case there is no employee with the employee number specified, you get the “no rows selected”
message. You might expect an error message like “single row subquery returns no rows” (actually, this
error message once existed in Oracle, many releases ago), but apparently there is no problem. See
Listing 4-37 for an example.

Listing 4-37. When the Subquery Returns No Rows

select ename, init, bdate
from employees
where bdate > (select bdate
 from employees
 where empno = 99999);

no rows selected

The subquery (returning no rows, or producing an empty set) is treated like a subquery returning

one row instead, containing a null value. In other words, SQL treats this situation as if there were an
employee 99999 with an unknown date of birth. This may sound strange; however, this behavior is fully
compliant with the ANSI/ISO SQL standard.

When a Single-Row Subquery Returns More Than One Row
In case the subquery happens to produce multiple rows, the Oracle DBMS reacts with the error message
shown in Listing 4-38.

Listing 4-38. Error: Single-Row Subquery Returns More Than One Row

select ename, init, bdate
from employees
where bdate > (select bdate
 from employees
 where ename = 'JONES');
where bdate > (select bdate
 *
ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

In this example, the problem is that we have two employees with the same name (Jones). Note that

you always risk this outcome, unless you make sure to use an equality comparison against a unique
column of the table accessed in the subquery, as in the example in Listing 4-36.

So far, we have investigated subqueries only in the WHERE clause of the SELECT statement. Oracle SQL
also supports subqueries in other SELECT statement clauses, such as the FROM clause and the SELECT
clause. Chapter 9 will revisit subqueries.

108

 CHAPTER 4 � RETRIEVAL: THE BASICS

4.9 Null Values
If a column (in a specific row of a table) contains no value, we say that such a column contains a null
value. The term null value is actually slightly misleading, because it is an indicator of missing
information. Null marker would have been a better term, because a null value is not a value.

There can be many different reasons for missing information. Sometimes, an attribute is
inapplicable; for example, only sales representatives are eligible for commission. An attribute value can
also be unknown; for example, the person entering data did not know certain values when the data was
entered. And, sometimes, you don’t know whether an attribute is applicable or inapplicable; for
example, if you don’t know the job of a specific employee, you don’t know whether a commission value
is applicable. The REGISTRATIONS table provides another good example. A null value in the EVALUATION
column can mean several things: the course did not yet take place, the attendee had no opinion, the
attendee refused to provide her opinion, the evaluation forms are not yet processed, and so on.

It would be nice if you could represent the reason why information is missing, but SQL supports
only one null value, and according to Ted Codd’s rule 3 (see Chapter 1) null values can have only one
context-independent meaning.

� Caution Don’t confuse null values with the number zero (0), a series of one or more spaces, or even an empty
string. Although an empty string ('') is formally different from a null value, Oracle sometimes interprets empty
strings as null values (see Chapter 6 for some examples). However, you should never rely on this (debatable)
interpretation of empty strings. You should always use the reserved word NULL to refer to null values in your SQL
commands. Furthermore, the Oracle documentation states that empty strings may no longer be interpreted as
NULL at some point in the future.

Null Value Display
By default, null values are displayed on your computer screen as “nothing,” as shown earlier in Listings
4-15 and 4-16. You can change this behavior in SQL Developer at the session level.

 You can specify how null values appear at the session level by modifying the Display NULL Value AS
environment setting, available in the SQL Developer Preferences dialog box, shown in Figure 4-5. Select
the Tools Preferences menu option to open this dialog box.

The Nature of Null Values
Null values sometimes behave counter-intuitively. Compare the results of the two queries in Listing 4-
39.

109

CHAPTER 4 � RETRIEVAL: THE BASICS

Figure 4-5. The SQL Developer Preferences dialog box

Listing 4-39. Comparing Two “Complementary” Queries

select empno, ename, comm
from employees
where comm > 400;

 EMPNO ENAME COMM
-------- -------- --------
 7521 WARD 500
 7654 MARTIN 1400

select empno, ename, comm
from employees
where comm <= 400;

110

 CHAPTER 4 � RETRIEVAL: THE BASICS

 EMPNO ENAME COMM
-------- -------- --------
 7499 ALLEN 300
 7844 TURNER 0

The first query in Listing 4-39 returns 2 employees, so you might expect to see the other 12
employees in the result of the second query, because the two WHERE clauses complement each other.
However, the two query results actually are not complementary.

If Oracle evaluates a condition, there are three possible outcomes: the result can be TRUE, FALSE, or
UNKNOWN. In other words, the SQL language is using three-valued logic.

Only those rows for which the condition evaluates to TRUE will appear in the result—no problem.
However, the EMPLOYEES table contains several rows for which both conditions in Listing 4-39 evaluate to
UNKNOWN. Therefore, these rows (ten, in this case) will not appear in either result.

Just to stress the nonintuitive nature of null values in SQL, you could say the following:

In SQL, NOT is not “not”

The explanation of this (case-sensitive) statement is that in three-valued logic, the NOT operator is
not the complement operator anymore:

NOT TRUE is equivalent with FALSE
not TRUE is equivalent with FALSE OR UNKNOWN

The IS NULL Operator
Suppose you are looking for all employees except the lucky ones with a commission greater than 400. In
that case, the second query in Listing 4-39 does not give you the correct answer, because you would
expect to see 12 employees instead of 2. To fix this query, you need the SQL IS NULL operator, as shown
in Listing 4-40.

Listing 4-40. Using the IS NULL Operator

select empno, ename, comm
from employees
where comm <= 400
or comm is null;

 EMPNO ENAME COMM
-------- -------- --------
 7369 SMITH
 7499 ALLEN 300
 7566 JONES
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER 0
 7876 ADAMS
 7900 JONES
 7902 FORD
 7934 MILLER

111

CHAPTER 4 � RETRIEVAL: THE BASICS

� Note Oracle SQL provides some functions with the specific purpose of handling null values in a flexible way
(such as NVL and NVL2). These functions are covered in the next chapter.

The IS NULL operator—just like BETWEEN, IN, and LIKE—has its own built-in negation option. See
Listing 4-41 for an example.

Listing 4-41. Using the IS NOT NULL Operator

select ename, job, msal, comm
from employees
where comm is not null;

ENAME JOB MSAL COMM
-------- -------- -------- --------
ALLEN SALESREP 1600 300
WARD SALESREP 1250 500
MARTIN SALESREP 1250 1400
TURNER SALESREP 1500 0

� Note The IS NULL operator always evaluates to TRUE or FALSE. UNKNOWN is an impossible outcome.

Null Values and the Equality Operator
The IS NULL operator has only one operand: the preceding column name (or column expression).
Actually, it is a pity that this operator is not written as IS_NULL (with an underscore instead of a space) to
stress the fact that this operator has just a single operand. In contrast, the equality operator (=) has two
operands: a left operand and a right one.

Watch the rather subtle syntax difference between the following two queries:

select * from registrations where evaluation IS null
select * from registrations where evaluation = null

If you were to read both queries aloud, you might not even hear any difference. However, the

seemingly innocent syntax change has definite consequences for the query results. They don’t produce
error messages, because both queries are syntactically correct.

If one (or both) of the operands being compared by the equality comparison operator (=) evaluates
to a null value, the result is UNKNOWN. In other words, you cannot say that a null value is equal to a null
value. The following shows the conclusions:

112

 CHAPTER 4 � RETRIEVAL: THE BASICS

Expression Evaluates to

NULL = NULL UNKNOWN

NULL IS NULL TRUE

This explains why the query in Listing 4-42 doesn’t return all 14 rows of the EMPLOYEES table.

Listing 4-42. Example of a Counterintuitive WHERE Clause

select ename, init
from employees
where comm = comm;

ENAME INIT
-------- -----
ALLEN JAM
WARD TF
MARTIN P
TURNER JJ

In mathematical logic, we call expressions always evaluating to TRUE a tautology. The example in

Listing 4-42 shows that certain trivial tautologies from two-valued logic (such as COMM = COMM) don’t hold
true in SQL.

Null Value Pitfalls
Null values in SQL often cause trouble. You must be aware of their existence in the database and their
odds of being generated by Oracle in (intermediate) results, and you must continuously ask yourself how
you want them to be treated in the processing of your SQL statements. Otherwise, the correctness of
your queries will be debatable, to say the least.

You have already seen that null values in expressions generally cause those expressions to produce a
null value. In the next chapter, you will learn how the various SQL functions handle null values.

It is obvious that there are many pitfalls in the area of missing information. It may be possible to
circumvent at least some of these problems by properly designing your databases. In one of his books,
Ted Codd, the “inventor” of the relational model, even proposed introducing two types of null values:
applicable and inapplicable. This would imply the need for a four-valued logic (see Ted Codd, 1990).

� Tip If you are interested in more details about the trouble of null values (or other theoretical information about
relational databases and pitfalls in SQL), the books written by Chris Date are the best starting point for further
exploration. In particular, his Selected Writings series is brilliant. Chris Date’s ability to write in an understandable,
entertaining, and fascinating way about these topics far exceeds others in the field.

113

CHAPTER 4 � RETRIEVAL: THE BASICS

Here’s a brain-twister to finish this section about null values: why does the query in Listing 4-43
produce “no rows selected”? There are registrations with evaluation values 4 and 5, for sure...

Listing 4-43. A Brain-Twister

select * from registrations
where evaluation not in (1,2,3,NULL);

no rows selected

The following WHERE clause:

 where evaluation not in (1,2,3,NULL)

is logically equivalent with the following “iterated AND” condition:

 where evaluation <> 1
 AND evaluation <> 2
 AND evaluation <> 3
 AND evaluation <> NULL

If you consider a row with an EVALUATION value of 1, 2, or 3, it is obvious that out of the first three

conditions, one of them returns FALSE, and the other two return TRUE. Therefore, the complete WHERE
clause returns FALSE.

If the EVALUATION value is NULL, all four conditions return UNKNOWN. Therefore, the end result is also
UNKNOWN. So far, there are no surprises.

If the EVALUATION value is 4 or 5 (the remaining two allowed values), the first three conditions all
return TRUE, but the last condition returns UNKNOWN. So you have the following expression:

(TRUE) and (TRUE) and (TRUE) and (UNKNOWN)

This is logically equivalent with UNKNOWN, so the complete WHERE clause returns UNKNOWN.

4.10 Truth Tables
Section 4.5 of this chapter showed how to use the AND, OR, and NOT operators to build compound
conditions. In that section, we didn’t worry too much about missing information and null values, but we
are now in a position to examine the combination of three-valued logic and compound conditions. This
is often a challenging subject, because three-valued logic is not always intuitive. The most reliable way to
investigate compound conditions is to use truth tables.

Table 4-3 shows the truth table of the NOT operator. In truth tables, UNK is commonly used as an
abbreviation for UNKNOWN.

114

 CHAPTER 4 � RETRIEVAL: THE BASICS

Table 4-3. Truth Table of the NOT Operator

Op1 NOT (Op1)

TRUE FALSE

FALSE TRUE

UNK UNK

In Table 4-3, Op1 stands for the operand. Since the NOT operator works on a single operand, the truth

table needs three rows to describe all possibilities. Note that the negation of UNK is UNK.
Table 4-4 shows the truth table of the AND and OR operators; Op1 and Op2 are the two operands, and

the truth table shows all nine possible combinations.

Table 4-4. Truth Table of the AND and OR Operators

Op1 Op2 Op1 AND Op2 Op1 OR Op2

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNK UNK TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNK FALSE UNK

UNK TRUE UNK TRUE

UNK FALSE FALSE UNK

UNK UNK UNK UNK

Note that the AND and OR operators are symmetric; that is, you can swap Op1 and Op2 without

changing the operator outcome.
If you are facing complicated compound conditions, truth tables can be very useful to rewrite those

conditions into simpler, logically equivalent, expressions.

115

CHAPTER 4 � RETRIEVAL: THE BASICS

116

4.11 Exercises
These exercises assume you have access to a database schema with the seven case tables (see Appendix
A of this book). You can download the scripts to create this schema from this book’s catalog page on the
Apress website. The exact URL is: http://apress.com/book/view/1430271970. Look in the “Book
Resources” section of the catalog page for a link to the download.

When you’re done with the exercises, check your answers against ours. We give our answers in
Appendix B.

1. Provide the code and description of all courses with an exact duration of four
days.

2. List all employees, sorted by job, and per job by age (from young to old).

3. Which courses have been held in Chicago and/or in Seattle?

4. Which employees attended both the Java course and the XML course? (Provide
their employee numbers.)

5. List the names and initials of all employees, except for R. Jones.

6. Find the number, job, and date of birth of all trainers and sales representatives
born before 1960.

7. List the numbers of all employees who do not work for the training
department.

8. List the numbers of all employees who did not attend the Java course.

9. Which employees have subordinates? Which employees don’t have
subordinates?

10. Produce an overview of all general course offerings (course category GEN) in
1999.

11. Provide the name and initials of all employees who have ever attended a
course taught by N. Smith. Hint: Use subqueries, and work “inside out” toward
the result; that is, retrieve the employee number of N. Smith, search for the
codes of all courses he ever taught, and so on.

12. How could you redesign the EMPLOYEES table to avoid the problem that the COMM
column contains null values meaning not applicable?

13. In Section 4.9, you saw the following statement: In SQL, NOT is not “not.”
What is this statement trying to say?

14. At the end of Section 4.5, you saw the following statement.

 The following two queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R')
select * from employees where ename <> 'BLAKE' OR init <> 'R'

 Prove this, using a truth table. Hint: Use P as an abbreviation for ename =
 'BLAKE', and use Q as an abbreviation for init = 'R'.

C H A P T E R 5

� � �

Retrieval: Functions

This chapter is a logical continuation of the previous chapter. The main topic is still retrieval. It
introduces functions and regular expressions, which enable you to formulate more powerful and
complicated queries in an easy way.

Oracle supports an abundance of functions. Apart from the various ANSI/ISO SQL standard
functions, many Oracle-specific functions have been added to Oracle’s SQL implementation over the
years.

The chapter begins with an overview of the seven categories of functions: arithmetic, text, regular
expression, date, general, conversion, and group. The remaining sections discuss each type, with the
exception of group functions, which are introduced in Chapter 8. You will also learn about regular
expressions, which are used with some text functions to search for certain patterns in text. The last
section of this chapter briefly explains how you can define your own SQL functions in Oracle, using the
PL/SQL programming language.

5.1 Overview of Functions
In Chapter 2, you saw that SQL supports the following standard SQL operators:

� Arithmetic operators: +, -, *, and /

� Alphanumeric operator: || (concatenation)

Besides using these operators, you can also perform many operations on your data using functions.
You can use functions virtually anywhere within queries: in the SELECT, WHERE, HAVING, and ORDER BY
clauses.

You can recognize functions as follows: they have a name, followed by one or more arguments
(between parentheses). In general, function arguments can be constants, variables, or expressions, and
sometimes function arguments contain functions themselves. Functions inside function arguments are
referred to as nested functions. In some cases, function arguments are optional. This means that you can
omit the optional argument and allow Oracle to use a standard (or default) value.

117

CHAPTER 5 � RETRIEVAL: FUNCTIONS

� Note Oracle SQL Reference uses different terms for two similar concepts: functions without arguments and
pseudo columns. For example, SYSDATE and USER are listed as functions, and ROWNUM, LEVEL, and NEXTVAL are
listed as pseudo columns. If you check older versions of the documentation, you will see that Oracle changed
terminology over the years. In version 5.1, both SYSDATE and USER were pseudo columns; in version 6.0, SYSDATE
was promoted to a function, but USER was still a pseudo column; and in version 7.3, both SYSDATE and USER were
documented as functions. You could argue that SYSDATE and USER return the same value for every row, while
ROWNUM, LEVEL, and NEXTVAL normally return different values. According to the current Oracle SQL Reference,
functions take zero or more arguments. This book sometimes refers to items as pseudo columns where Oracle
SQL Reference refers to them as functions.

Obviously, the function arguments come with some constraints. For example, the datatype of the
function arguments must make some logical sense. The Oracle DBMS always tries to perform implicit
datatype conversion, and it will generate an error message only if such an attempt fails. In other words, if
you specify a number as an argument for a function that expects a string instead, the number will be
interpreted alphanumerically. However, if you ask for the square root of an employee name, you will get
the error message “ORA-01722: invalid number.”

� Caution It is not a good idea to rely on implicit datatype conversion in your SQL statements. You should always
use explicit conversion functions instead. This improves SQL readability, robustness, and possibly performance.

As stated previously, Oracle supports many functions. You can categorize them based on the
datatype they expect in their arguments, as shown in Table 5-1.

Table 5-1. Function Types

Function Type Applicable To

Arithmetic functions Numerical data

Text functions Alphanumeric data

Regular expression functions Alphanumeric data

Date functions Date/time-related data

General functions Any datatype

Conversion functions Datatype conversion

Group functions Sets of values

118

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

The last category in Table 5-1, group functions, is covered in Chapter 8, where we discuss the group
BY and having clauses of the SELECT command, since that chapter is a more natural place to introduce
them. The other function types are discussed in the following sections.

5.2 Arithmetic Functions
The most popular arithmetic functions of Oracle are listed in Table 5-2.

Table 5-2. Common Oracle Arithmetic Functions

Function Description

ROUND(n[,m]) Round n on m decimal positions

TRUNC(n[,m]) Truncate n on m decimal positions

CEIL(n) Round n upwards to an integer

FLOOR(n) Round n downwards to an integer

ABS(n) Absolute value of n

SIGN(n) –1, 0, or 1 if n is negative, zero, or positive

SQRT(n) Square root of n

EXP(n) e (= 2,7182813…) raised to the nth power

LN(n),LOG(m,n) Natural logarithm, and logarithm base m

POWER(n,m) n raised to the mth power

MOD(n,m) Remainder of n divided by m

SIN(n), COS(n), TAN(n) Sine, cosine, and tangent of n (n expressed in radians)

ASIN(n), ACOS(n), ATAN(n) Arcsine, arccosine, and arctangent of n

SINH(n), COSH(n), TANH(n) Hyperbolic sine, hyperbolic cosine, and hyperbolic tangent of n

As Table 5-2 shows, the ROUND and TRUNC functions have an optional argument m; the default value for

m is zero. Note that you can also use negative values for m, as you can see from the second example in
Listing 5-1.

Listings 5-1 through 5-4 show some self-explanatory examples of using the following arithmetic
functions: ROUND, CEIL, FLOOR, ABS, SIGN, POWER, and MOD.

119

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-1. Using the ROUND, CEIL, and FLOOR Functions

select round(345.678, 0), ceil(345.678), floor(345.678)
from dual;

ROUND(345.678) CEIL(345.678) FLOOR(345.678)
-------------- ------------- --------------
 346 346 345

select round(345.678, 2)
, round(345.678,-1)
, round(345.678,-2)
from dual;

ROUND(345.678,2) ROUND(345.678,-1) ROUND(345.678,-2)
---------------- ----------------- -----------------
 345.68 350 300

Listing 5-2. Using the ABS and SIGN Functions

select abs(-123), abs(0), abs(456)
, sign(-123), sign(0), sign(456)
from dual;

ABS(-123) ABS(0) ABS(456) SIGN(-123) SIGN(0) SIGN(456)
--------- -------- -------- ---------- -------- ---------
 123 0 456 -1 0 1

Listing 5-3. Using the POWER and MOD Functions

select power(2,3), power(-2,3)
, mod(8,3), mod(13,0)
from dual;

POWER(2,3) POWER(-2,3) MOD(8,3) MOD(13,0)
---------- ----------- -------- ---------
 8 -8 2 13

Listing 5-4. Using MOD in the WHERE Clause

select empno as odd_empno
, ename
from employees
where mod(empno,2) = 1;

120

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

ODD_EMPNO ENAME
--------- --------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7839 KING

The example in Listing 5-5 calculates the age (expressed in weeks and additional days) of all

employees working for department 10. In this example, we use the difference between the BDATE column
and the pseudo column Sysdate. Of course, your results will be different from the results in Listing 5-5,
because they depend on the point in time that you execute the query.

Listing 5-5. Using the FLOOR and MOD Functions

select ename
, floor((sysdate-bdate)/7) as weeks
, floor(mod(sysdate-bdate,7)) as days
from employees
where deptno = 10;

ENAME WEEKS DAYS
-------- -------- --------
CLARK 2032 5
KING 2688 0
MILLER 2208 6

Listing 5-6 shows an example using the arithmetic functions SIN, TANH, EXP, LOG, and LN. You

probably recognize the number 3.14159265 as an approximation of (pi), which is used in the SIN
function example to convert degrees into radians.

Listing 5-6. Trigonometric, Exponential, and Logarithmic Functions

select sin(30*3.14159265/180), tanh(0.5)
, exp(4), log(2,32), ln(32)
from dual;

SIN(30*3.14159265/180) TANH(0.5) EXP(4) LOG(2,32) LN(32)
---------------------- --------- -------- --------- --------
 .5 .4621172 54.59815 5 3.465736

5.3 Text Functions
The most important Oracle text functions are listed in Table 5-3.

121

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Table 5-3. Common Oracle Text Functions

Function Description

LENGTH(t) Length (expressed in characters) of t

ASCII(t) ASCII value of first character of t

CHR(n) Character with ASCII value n

UPPER(t), LOWER(t) t in uppercase/lowercase

INITCAP(t) Each word in t with initial uppercase; remainder in lowercase

LTRIM(t[,k]) Remove characters from the left of t, until the first character not in k

RTRIM(t[,k]) Remove characters from the right of t, after the last character not in k

TRIM([[option][c FROM]]t) Trim character c from t; option = LEADING, TRAILING, or BOTH

LPAD(t,n[,k]) Left-pad t with sequence of characters in k to length n

RPAD(t,n[,k]) Right-pad t with k to length n (the default k is a space)

SUBSTR(t,n[,m]) Substring of t from position n, m characters long (the default for m is until
end)

INSTR(t,k) Position of the first occurrence of k in t

INSTR(t,k,n) Same as INSTR(t,k), but starting from position n in t

INSTR(t,k,n,m) Same as INSTR(t,k,n), but now the mth occurrence of k

TRANSLATE(t,v,w) Replace characters from v (occurring in t) by corresponding character in w

REPLACE(t,v) Remove each occurrence of v from t

REPLACE(t,v,w) Replace each occurrence of v in t by w

CONCAT(t1,t2) Concatenate t1 and t2 (equivalent to the || operator)

� Note When counting positions in strings, always start with one, not with zero.

122

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

Several text functions have a corresponding function with a B suffix, such as SUBSTRB, INSTRB, and
LENGTHB. These special functions express their results in bytes instead of characters. This distinction is
relevant only if you are using multibyte character sets. See Oracle SQL Reference for more details.

Listing 5-7 shows some examples of the LOWER, UPPER, INITCAP, and LENGTH text functions; the results
are self-explanatory.

Listing 5-7. Using the lower, UPPER, initcap, and LENGTH Functions

select lower(job), initcap(ename)
from employees
where upper(job) = 'SALESREP'
order by length(ename);

LOWER(JOB) INITCAP(ENAME)
---------- --------------
salesrep Ward
salesrep Allen
salesrep Martin
salesrep Turner

Listing 5-8 illustrates the text functions ascii and CHR. If you compare the third and the fifth

columns of the result, you can see that the ascii function considers only the first character of its
argument, regardless of the length of the input text (see Table 5-3 for the description of the ASCII text
function).

Listing 5-8. Using the ASCII and CHR Functions

select ascii('a'), ascii('z')
, ascii('A'), ascii('Z')
, ascii('ABC'), chr(77)
from dual;

ASCII('A') ASCII('Z') ASCII('A') ASCII('Z') ASCII('ABC') CHR(77)
---------- ---------- ---------- ---------- ------------ -------
 97 122 65 90 65 M

The first two column headings in Listing 5-8 are very confusing, because SQL*Plus converts all

SELECT clause expressions to uppercase, including your function arguments. If you want lowercase
characters in your column headings, you must add column aliases and specify them between double
quotes. For example, the first line of Listing 5-8 would look like this:

select ascii('a') as "ASCII('a')", ascii('z') as "ASCII('z')"

Listings 5-9 and 5-10 show some self-explanatory examples of using the INSTR, SUBSTR, LTRIM, and

RTRIM text functions. (The layout in Listing 5-9 is formatted to increase readability.)

123

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-9. Using the INSTR and substr Functions

select dname
, substr(dname,4) as substr1
, substr(dname,4,3) as substr2
, instr(dname,'I') as instr1
, instr(dname,'I',5) as instr2
, instr(dname,'I',3,2) as instr3
from departments;

DNAME SUBSTR1 SUBSTR2 INSTR1 INSTR2 INSTR3
---------- ------- ------- -------- -------- --------
ACCOUNTING OUNTING OUN 8 8 0
HR 0 0 0
SALES ES ES 0 0 0
TRAINING INING INI 4 6 6

Listing 5-10. Using the ltrim and RTRIM Functions

select ename
, ltrim(ename,'S') as ltrim_s
, rtrim(ename,'S') as rtrim_s
from employees
where deptno = 20;

ENAME LTRIM_S RTRIM_S
-------- -------- --------
ADAMS ADAMS ADAM
FORD FORD FORD
JONES JONES JONE
SCOTT COTT SCOTT
SMITH MITH SMITH

Listing 5-11 demonstrates using the LPAD and RPAD functions. Note that they not only lengthen

strings, as their names suggest, but sometimes they also shorten strings; for example, see what happens
with ACCOUNTING and TRAINING in Listing 5-11.

Listing 5-11. Using the LPAD and RPAD Functions

select dname
, lpad(dname,9,'>')
, rpad(dname,6,'<')
from departments;

DNAME LPAD(DNAM RPAD(D
---------- --------- ------
ACCOUNTING ACCOUNTIN ACCOUN
HR >>>>>>>HR HR<<<<
SALES >>>>SALES SALES<
TRAINING >TRAINING TRAINI

124

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

You can use the LPAD and RPAD functions to produce column-value histograms by providing variable
expressions, instead of constant values, as their second argument. For an example, see Listing 5-12,
which shows how to create a salary histogram with a granularity of 100.

Listing 5-12. Producing Histograms with the LPAD and RPAD Functions

select lpad(msal,4)||' '||
 rpad('o',msal/100,'o') as histogram
from employees
where deptno = 30;

HISTOGRAM

1600 oooooooooooooooo
1250 oooooooooooo
1250 oooooooooooo
2850 oooooooooooooooooooooooooooo
1500 ooooooooooooooo
 800 oooooooo

Listing 5-13 shows the difference between the functions REPLACE and TRANSLATE. TRANSLATE replaces

individual characters. REPLACE offers the option to replace words with other words. Note also what
happens if you use the REPLACE function with only two arguments, instead of three: the function removes
words instead of replacing them.

Listing 5-13. Using the TRANSLATE and REPLACE Functions

select translate('beer bucket','beer','milk') as translate
, replace ('beer bucket','beer','milk') as replace_1
, replace ('beer bucket','beer') as replace_2
from dual;

TRANSLATE REPLACE_1 REPLACE_2
----------- ----------- ---------
miik muckit milk bucket bucket

5.4 Regular Expressions
The previous chapter introduced the LIKE operator, and the previous section of this chapter introduced
the INSTR, SUBSTR, and REPLACE functions. All of these SQL functions search for text. The LIKE operator
offers the two wildcard characters % and _, which allow you to perform more advanced searches. The
other three functions accept plain text searches only. This functionality is sometimes insufficient for
complicated search operations. Therefore, Oracle SQL also supports four functions: REGEXP_LIKE,
REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE. These SQL functions support, as their names suggest,
so-called regular expressions. Apart from that, they serve the same purpose as their non-REGEXP
counterparts.

Regular expressions are well known in all UNIX operating system variants (such as Linux, Solaris,
and HP/UX) and are part of the international POSIX standard. They are documented in great detail in

125

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Oracle SQL Reference, Appendix C. This section provides an introduction to regular expressions, focusing
on their use with the Oracle SQL regular expression functions.

Regular Expression Operators and Metasymbols
Table 5-4 shows the most important regular expression metasymbols and their meanings. The Type
column in Table 5-4 may contain the following:

� Postfix, which means that the operator follows its operand

� Prefix, which means that the operator precedes its operand

� Infix, which means that the operator separates its operands

� Nothing (empty), which means that the operator has no operands

Table 5-4. Common Regular Expression Operators and Metasymbols

Operator Type Description

* Postfix Zero or more occurrences

+ Postfix One or more occurrences

? Postfix Zero or one occurrence

| Infix Operator to separate alternative choices

^ Prefix Beginning of a string, or position immediately following a newline character

$ Postfix End of the line

. -- Any single character

[[^]list] -- One character out of a list; a circumflex (^) at the beginning works as a
negation; a dash (-) between two characters works as a range indicator

() -- Groups a (sub)expression, allowing you to refer to it further down in the
expression

{m} Postfix Precisely m times

{m,} Postfix At least m times

{m,n} Postfix At least m times, and at most n times

\n -- Refers back to the nth subexpression between parentheses (n is a digit between 1
and 9)

126

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

If the square brackets notation does not give you enough precision or flexibility, you can use
multicharacter collation elements, character classes, and equivalence classes, as follows:

� Multicharacter collation elements are relevant for certain languages. Valid values
are predefined and depend on the NLS_SORT setting. Use [. and .] to enclose
collation elements.

� Character classes give you more flexibility than the dash symbol between square
brackets; for example, you can refer to alphabetic characters, numeric digits,
alphanumeric characters, blank spaces, punctuation, and so on. Use [: and :] to
enclose character classes.

� Equivalence classes allow you to match all accented and unaccented versions of a
letter. Use [= and =] to enclose equivalence classes.

Before we look at some examples of how these regular expression operators work with the regular
expression functions (in Listings 5-14 through 5-16), we need to discuss the syntax of the functions.

Regular Expression Function Syntax
The four regular expression functions have the following syntax. You can specify regular expressions in
their pattern argument.

� REGEXP_LIKE(text, pattern[, options])

� REGEXP_INSTR(text, pattern[, pos[, occurrence[, return[, options]]]])

� REGEXP_SUBSTR(text, pattern[, pos[, occurrence[, options]]])

� REGEXP_REPLACE(text, pattern[, replace [, pos[, occurrence[, options]]]])

For all four functions, the first two arguments (text and pattern) are mandatory. These arguments
provide the source text and the regular expression to search for, respectively. All of the remaining
arguments are optional. However, function arguments can only be omitted from the right to the left. For
example, if you want to specify a value for the options argument of the REGEXP_INSTR function, all six
arguments are mandatory and must be specified.

In REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE, you can use the pos argument to specify from
which position in text you want the search to start (the default value is 1), and with occurrence, you can
specify how often you want to find the search pattern (the default value is 1). The options argument of
all four of the functions and the return argument of the REGEXP_INSTR function require a bit more
explanation.

Influencing Matching Behavior
You can influence the matching behavior of the regular expression functions with their options
argument. Table 5-5 shows the values you can specify in the options function argument.

127

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Table 5-5. Regular Expression Option Values

Option Description

i Case-insensitive search (no distinction between uppercase and lowercase)

c Case-sensitive search

n Allows the period (.) to match the newline character

m Treat text as multiple lines; ^ and $ refer to the beginning and end of any of those lines

You can specify one or more of these values. If you specify conflicting combinations, such as 'ic',

the Oracle DBMS uses the last value (c) and ignores the first one.

� Note The default behavior for case-sensitivity depends on the NLS_SORT parameter value.

REGEXP_INSTR Return Value
The return option of the REGEXP_INSTR function allows you to influence the return value. By default, the
position where the pattern was found is returned, but sometimes you want to know the position
immediately after the found pattern. Of course, you can add the length of the pattern to the result of the
function; however, using the return option is easier in that case. Table 5-6 shows the values you can
specify in the return function argument.

Table 5-6. Regular Expression Return Values

Return Description

0 Position of the first character of the pattern found (default)

1 Position of the first character after the pattern found

REGEXP_LIKE
Let’s look at an example of the REGEXP_LIKE function, using a SQL*Plus trick that will be explained in a
later chapter. The ampersand character (&) in the WHERE clause of the query in Listing 5-14 makes
SQL*Plus prompt for a value for text; therefore, you can repeat this query in the SQL buffer with the /
command as often as you like, specifying different source text values to explore the effect of the search
pattern.

128

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-14. Using the REGEXP_LIKE Function

SQL> select 'found!' as result from dual
 2 where regexp_like('&text', '^.a{1,2}.+$', 'i');

Enter value for text: bar

RESULT

found!

SQL> /
Enter value for text: BAARF

RESULT

found!

SQL> /
Enter value for text: ba

no rows selected

SQL>

The results of Listing 5-14 show that the pattern means the following: the first character is arbitrary,

followed by at least one and at most two a characters, followed by one or more arbitrary characters,
while ignoring the differences between uppercase and lowercase. By the way, Listing 5-14 shows that
REGEXP_LIKE is a Boolean function; its result is TRUE or FALSE.

REGEXP_INSTR
Listing 5-15 uses the REGEXP_INSTR function to search for history comments with nine or more words. It
looks for at least nine nonempty (+) substrings that do not contain spaces ([^]).

Listing 5-15. Using the REGEXP_INSTR Function

select comments
from history
where regexp_instr(comments, '[^]+', 1, 9) > 0;

COMMENTS
--
Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...
Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

129

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Notice that the last row of the result contains only seven actual words. It is found because the text
strings -- and :-) are counted as “words.”

REGEXP_SUBSTR
Listing 5-16 demonstrates searching for comments between parentheses, using the REGEXP_SUBSTR
function. The search pattern looks for a left parenthesis, followed by at least one character not equal to a
right parenthesis, followed by a right parenthesis. Note that you need the backslash character (\) to
suppress the special meaning of the parentheses.

Listing 5-16. Using the REGEXP_SUBSTR Function

select comments
, regexp_substr(comments, '\([^\)]+\)') as substring
from history
where comments like '%(%';

COMMENTS
--
SUBSTRING
--
Project (half a month) for the ACCOUNTING department
(half a month)

REGEXP_REPLACE
Listing 5-17 shows how you can use the REGEXP_REPLACE function to replace all words starting with an f
with a question mark.

Listing 5-17. Using the REGEXP_REPLACE Function

select regexp_replace(comments, ' f[a-z]* ',' ? ',1,1,'i')
from history
where regexp_like(comments, ' f[a-z]* ','i');

REGEXP_REPLACE(COMMENTS,'F[A-Z]*','?',1,1,'I')

Hired as the new manager ? the accounting department
Founder and ? employee of the company
Project (half a month) ? the ACCOUNTING department

Notice that you must specify values for all function arguments if you want to make the replacement

case-insensitive, including default values for pos and occurrence. The WHERE clause ensures that the
query returns only the matching rows.

130

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

5.5 Date Functions
Before discussing the various Oracle date functions, let’s first review the syntax to specify date/time-
related constants (or literals), using predefined ANSI/ISO SQL standard formats.

Table 5-7 shows the syntax for the literals and examples.

Table 5-7. Syntax for Date/Time-Related Constants

Literal Example

DATE 'yyyy-mm-dd' DATE '2004-09-25'

TIMESTAMP 'yyyy-mm-dd hh24:mi:ss.ffffff'
[AT TIME ZONE '...']

TIMESTAMP '2004-09-25 23:59:59.99999' AT TIME
ZONE 'CET'

TIMESTAMP 'yyyy-mm-dd hh24:mi:ss.ffffff
{+|-}hh:mi'

TIMESTAMP '2004-09-25 23:59:59.99 -5:00'

INTERVAL 'expr' <qualifier> INTERVAL '1' YEAR
INTERVAL '1 2:3' DAY TO MINUTE

You can experiment with this syntax by entering the following query, using the SQL*Plus ampersand

(&) substitution method (as in Listing 5-14):

elect &input_date from dual;

If you simply enter an alphanumeric string, such as '21-JUN-04', you must rely on an implicit

conversion by Oracle. This implicit conversion succeeds or fails depending on the NLS_DATE_FORMAT and
NLS_TIMESTAMP_FORMAT parameter settings for your session. If you want to see an overview of all current
NLS parameter settings for your session, you can use the following query:

select * from nls_session_parameters;

If you execute this query, you will see the current values for NLS_DATE_FORMAT and

NLS_TIMESTAMP_FORMAT.
Table 5-8 shows the most commonly used Oracle date functions.

131

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Table 5-8. Common Oracle Date Functions

Function Description

ADD_MONTHS(d, n) Date d plus n months

MONTHS_BETWEEN(d, e) Months between dates d and e

LAST_DAY(d) Last day of the month containing date d

NEXT_DAY(d, weekday) The first weekday (mon, tue, etc.) after d

NEW_TIME(d, z1, z2) Convert date/time from time zone z1 to z2

ROUND(d[, fmt]) d rounded on fmt (the default for fmt is midnight)

TRUNC(d[, fmt]) d truncated on fmt (the default for fmt is midnight)

EXTRACT(c FROM d) Extract date/time component c from expression d

We’ll start with the last function listed in Table 5-8.

EXTRACT
You can extract various components of a date or timestamp expression with the ANSI/ISO standard
EXTRACT function. Depending on the datatype of the argument d (DATE, TIMESTAMP, or INTERVAL) the
following values for c are supported: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_ABBR, and so on.
Listing 5-18 shows an example.

Listing 5-18. Using the EXTRACT Function

select bdate
, extract(year from bdate) as year_of_birth
, extract(month from bdate) as month_of_birth
, extract(day from bdate) as day_of_birth
from employees
where ename = 'KING';

BDATE YEAR_OF_BIRTH MONTH_OF_BIRTH DAY_OF_BIRTH
----------- ------------- -------------- ------------
17-NOV-1952 1952 11 17

132

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

ROUND and TRUNC
Table 5-9 lists the date formats (fmt) supported by the date functions ROUND and TRUNC. The default
format is 'DD', resulting in rounding or truncating to midnight. For example, TRUNC(SYSDATE) truncates
the current system date and time to midnight.

Table 5-9. ROUND and TRUNC Date Formats

Format Description

CC, SCC Century, with or without minus sign (BC)

[S]YYYY, [S]YEAR, YYY, YY, Y Year (in various appearances)

IYYY, IYY, IY, I ISO year

Q Quarter

MONTH, MON, MM, RM Month (full name, abbreviated name, numeric, Roman numerals)

IW, WW (ISO) week number

W Day of the week

DDD, DD, J Day (of the year/of the month/Julian day)

DAY, DY, D Closest Sunday

HH, HH12, HH24 Hours

MI Minutes

MONTHS_BETWEEN and ADD_MONTHS
Listings 5-19 and 5-20 show examples of using the date functions MONTHS_BETWEEN and ADD_MONTHS.

Listing 5-19. Using the MONTHS_BETWEEN Function

select ename, months_between(sysdate,bdate)
from employees
where deptno = 10;

ENAME MONTHS_BETWEEN(SYSDATE,BDATE)
-------- -----------------------------
CLARK 467.5042
KING 618.2461
MILLER 508.0525

133

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-20. Using the ADD_MONTHS Function

select add_months('29-JAN-1996', 1) add_months_1
, add_months('29-JAN-1997', 1) add_months_2
, add_months('11-AUG-1997',-3) add_months_3
from dual;

ADD_MONTHS_1 ADD_MONTHS_2 ADD_MONTHS_3
------------ ------------ ------------
29-FEB-1996 28-FEB-1997 11-MAY-1997

Notice what happens in Listing 5-20 with a non-leap year. There is something else worth noting

about the query in Listing 5-20. As explained earlier, you could get back an error message because you
rely on implicit interpretation and conversion of the three strings by Oracle. It would have been
preferable to specify the three date literals in Listing 5-20 using the key word DATE (see the beginning of
this section) or using the TO_DATE conversion function. (See Section 5.7 later in this chapter for details
about conversion functions.)

NEXT_DAY and LAST_DAY
Listing 5-21 shows examples of using the date functions NEXT_DAY, LAST_DAY, ROUND, and TRUNC. Compare
the various function results with the first column, showing the current SYSDATE value.

Listing 5-21. Using the NEXT_DAY, LAST_DAY, ROUND, and TRUNC Functions

select sysdate
, next_day(sysdate,'SAT') as next_sat
, last_day(sysdate) as last_day
, round(sysdate,'YY') as round_yy
, trunc(sysdate,'CC') as trunc_cc
from dual;

SYSDATE NEXT_SAT LAST_DAY ROUND_YY TRUNC_CC
----------- ----------- ----------- ----------- -----------
17-AUG-2009 22-AUG-2009 31-AUG-2009 01-JAN-2010 01-JAN-2001

5.6 General Functions
The most important general (datatype-independent) functions are shown in Table 5-10.

134

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

Table 5-10. Common General Oracle Functions

Function Description

GREATEST(a, b, ...) Greatest value of the function arguments

LEAST(a, b, ...) Least value of the function arguments

NULLIF(a, b) NULL if a = b; otherwise a

COALESCE(a, b, ...) The first not NULL argument (and NULL if all arguments are NULL)

NVL(x, y) y if x is NULL; otherwise x

NVL2(x, y, z) y if x is not NULL; otherwise z

CASE x when a1 then b1
when a2 then b2 ... else y
end

DECODE(x, a1, b1,
a2, b2,
…, an, bn
[, y])

b1 if x = a1,
b2 if x = a2, ...
bn if x = an,
and otherwise y (or default: NULL)

You can express all of the other functions as CASE expressions, too, because they all share a

procedural nature. In other words, you don’t really need them. Nevertheless, these functions can be
useful in your SQL code because, for example, they make your code more compact. Note also that only
the CASE, NULLIF and COALESCE functions are part of the ANSI/ISO standard. The remaining five functions
(GREATEST, LEAST, NVL, NVL2, and DECODE) are Oracle-specific SQL extensions. In other words, if your goal is
to write portable SQL code, you should use only CASE, NULLIF, and COALESCE.

GREATEST and LEAST
The GREATEST and LEAST functions can be useful in certain situations. Don’t confuse them with the MAX
and MIN group functions (which are covered in detail in Chapter 8). For now, remember the following
differences:

� GREATEST and LEAST allow you to make horizontal comparisons; they operate at the
row level.

� MAX and MIN allow you to make vertical comparisons; they operate at the column
level.

Listing 5-22 shows an example of the GREATEST and LEAST functions, selecting three constant
expressions against the DUAL table.

135

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-22. Using the GREATEST and LEAST Functions

select greatest(12*6,148/2,73)
, least (12*6,148/2,73)
from dual;

GREATEST(12*6,148/2,73) LEAST(12*6,148/2,73)
----------------------- --------------------
 74 72

NVL
The NVL function is useful if you want to prevent certain expressions, or expression components, from
evaluating to a null value, as you can see in Listing 5-23.

Listing 5-23. Using the NVL Function

select ename, msal, comm
, 12*msal+nvl(comm,0) as yearsal
from employees
where ename like '%T%';

ENAME MSAL COMM YEARSAL
-------- -------- -------- --------
SMITH 800 9600
MARTIN 1250 1400 16400
SCOTT 3000 36000
TURNER 1500 0 18000

DECODE
The DECODE function is a typical remnant from the days that Oracle SQL did not yet support CASE
expressions. There are three good reasons not to use DECODE anymore:

� DECODE function expressions are quite difficult to read.

� DECODE is not part of the ANSI/ISO SQL standard.

� CASE expressions are much more powerful.

For completeness, and because you may encounter the DECODE function in legacy Oracle SQL
programs, Listing 5-24 shows a query where the DECODE function is used in the SELECT clause (to get a
certain output) and in the ORDER BY clause (to do a customized sorting of the records).

Listing 5-24. Using the DECODE Function

select job, ename
, decode(greatest(msal,2500)
 ,2500,'cheap','expensive') as class

136

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

from employees
where bdate < date '1964-01-01'
order by decode(job,'DIRECTOR',1,'MANAGER',2,3);

JOB ENAME CLASS
-------- -------- ---------
DIRECTOR KING expensive
MANAGER BLAKE expensive
SALESREP ALLEN cheap
SALESREP WARD cheap
ADMIN MILLER cheap
TRAINER FORD expensive
TRAINER SCOTT expensive
SALESREP MARTIN cheap

5.7 Conversion Functions
Conversion functions allow you to convert expressions explicitly from one datatype into another
datatype. Table 5-11 lists the most common conversion functions in Oracle SQL. See Oracle SQL
Reference for more conversion functions.

Table 5-11. Common Oracle Conversion Functions

Function Description

TO_CHAR(n[,fmt]) Convert number n to a string

TO_CHAR(d[,fmt]) Convert date/time expression d to a string

TO_NUMBER(t) Convert string t to a number

TO_BINARY_FLOAT(e[,fmt]) Convert expression e to a floating-point number

TO_BINARY_DOUBLE(e[,fmt]) Convert expression e to a double-precision, floating-point number

TO_DATE(t[,fmt]) Convert string t to a date

TO_YMINTERVAL(t) Convert string t to a YEAR TO MONTH interval

TO_DSINTERVAL(t) Convert string t to a DAY TO SECOND interval

TO_TIMESTAMP (t[,fmt]) Convert string t to a timestamp

CAST(e AS t) Convert expression e to datatype t

137

CHAPTER 5 � RETRIEVAL: FUNCTIONS

� Note The syntax in Table 5-11 is not complete. Most conversion functions allow you to specify additional NLS
parameters after the format (fmt) argument. For example, you can influence the currency symbol, the numeric
characters (period and comma), and the date language. See Oracle SQL Reference and Globalization Support
Guide for more details.

TO_NUMBER and TO_CHAR
Listing 5-25 shows how you can use the TO_NUMBER and TO_CHAR functions (with or without a format
argument) to convert strings to numbers and vice versa.

Listing 5-25. Using the TO_CHAR and TO_NUMBER Functions

select 123
, to_char(123)
, to_char(123,'$09999.99')
, to_number('123')
from dual;

 123 TO_ TO_CHAR(12 TO_NUMBER('123')
-------- --- ---------- ----------------
 123 123 $00123.00 123

Listing 5-26 shows how you can nest conversion functions. On the third line, you use the TO_DATE

function to interpret the string '01/01/2006' as a date value; then, you use the TO_CHAR function to
extract the day from the date value, as you can see in the third column of the query result.

Listing 5-26. Nesting the TO_CHAR and TO_DATE Functions

select sysdate as today
, to_char(sysdate,'hh24:mi:ss') as time
, to_char(to_date('01/01/2006','dd/mm/yyyy')
 ,'"is on "Day') as new_year_2006
from dual;

TODAY TIME NEW_YEAR_2006
--------- -------- ---------------
24-MAY-04 15:05:48 is on Sunday

In this example, the format Day results in Sunday because the default language is English. You can set

the NLS_LANGUAGE parameter to another language to influence this behavior. For example, if you set this
session (or system) parameter to Dutch, the result becomes Zondag (see also Listing 2-20 in Chapter 2).
You could also override this default at the statement level, by setting the NLS_DATE_LANGUAGE parameter,
as shown in Listing 5-27.

138

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-27. Influencing the Date Language at the Statement Level

select to_char(sysdate, 'Day')
, to_char(sysdate, 'Day', 'nls_date_language=Dutch')
from dual;

TO_CHAR(S TO_CHAR(S
--------- ---------
Tuesday Dinsdag

Conversion Function Formats
Table 5-11 showed that several Oracle conversion functions support an optional format (fmt) argument.
These format arguments allow you to deviate from the default conversion. Table 5-12 shows most of the
possibilities.

Table 5-12. Conversion Functions: Optional Format Components

Format Description

[S]CC Century; S stands for the minus sign (BC)

[S]YYYY Year, with or without minus sign

YYY, YY, Y Last 3, 2, or 1 digits of the year

[S]YEAR Year spelled out, with or without minus sign (S)

BC, AD BC/AD indicator

Q Quarter (1,2,3,4)

MM Month (01–12)

MONTH Month name, padded with spaces to length 9

MON Month name, abbreviated (three characters)

WW, IW (ISO) week number (01–53)

W Week number within the month (1–5)

DDD Day number within the year (1–366)

DD Day number within the month (1–31)

139

CHAPTER 5 � RETRIEVAL: FUNCTIONS

D Day number within the week (1–7)

DAY Day name, padded with spaces to length 9

DY Day name abbreviation (three characters)

J Julian date; day number since 01/01/4712 BC

AM, PM AM/PM indicator

HH[12] Hour within the day (01–12)

HH24 Hour within the day (00–23)

MI Minutes within the hour (00–59)

SS Seconds within the minute (00–59)

SSSSS Seconds after midnight (0–86399)

/., Punctuation characters; displayed verbatim (between date fields)

"..." String between double quotes displayed within the date expression

� Note You can influence several date characteristics, such as the first day of the week, with the NLS_TERRITORY
parameter.

Oracle supports some additions that you can use in conversion function format strings to further
refine the results of those functions. Table 5-13 shows these additions.

Table 5-13. Conversion Functions: Format Component Additions

Addition Description

FM Fill mode toggle

TH Ordinal number (e.g., 4th)

SP Spelled-out number (e.g., four)

THSP, SPTH Spelled-ordinal number (e.g., fourth)

140

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

In fill mode, Oracle does not perform padding with spaces, and numbers are not prefixed with
leading zeros. You can enable and disable this fill mode mechanism within the same format string as
many times as you like, by repeating FM (it is a toggle). Ordinal numbers indicate a relative position in a
sequence.

The conversion function formats are case-sensitive, as demonstrated in Listing 5-28.

Listing 5-28. TO_CHAR Formats and Case-Sensitivity

select to_char(sysdate,'DAY dy Dy') as day
, to_char(sysdate,'MONTH mon') as month
from dual;

DAY MONTH
----------------- -------------
MONDAY mon Mon MAY may

Datatype Conversion
In the area of datatype conversion, you can leave many issues up to the Oracle DBMS. However, for
reasons of syntax clarity, it is better to express the datatype conversions explicitly with the appropriate
conversion functions. See the query in Listing 5-29 for an example.

Listing 5-29. Relying on Implicit Datatype Conversion

select ename, substr(bdate,8)+16
from employees
where deptno = 10;

ENAME SUBSTR(BDATE,8)+16
-------- ------------------
CLARK 81
KING 68
MILLER 78

This query is internally interpreted and executed by the Oracle DBMS as the following:

select ename, TO_NUMBER(substr(to_char(bdate,'...'),8))+16
from employees
where deptno = 10

You should have formulated the query that way in the first place.

CAST
The last function to discuss in this section about conversion functions is CAST. This function is part of the
ANSI/ISO SQL standard, as opposed to all other conversion functions discussed so far in this section.
The CAST function is a generic conversion function. It allows you to convert any expression to any specific
datatype, including the option to specify a datatype precision. See Listing 5-30 for some examples.

141

CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-30. CAST Function Examples

select cast(12.98 as number(2)) example1
, cast('oak' as char(10)) example2
, cast(null as date) example3
from dual;

EXAMPLE1 EXAMPLE2 EXAMPLE3
-------- ---------- ---------
 13 oak

5.8 Stored Functions
Although you might argue that Oracle already offers more than enough functions, you may find that you
need a specific capability that isn’t already provided. In that case, you can develop your own functions
(using PL/SQL) and add them to the SQL language.

PL/SQL is the standard procedural programming language for Oracle databases. PL/SQL is a
superset of SQL, adding several procedural capabilities to the nonprocedural SQL language. Here, we
will investigate one simple example of PL/SQL language usage in relation to custom functions. For more
information about PL/SQL, refer to Oracle PL/SQL User’s Guide and Reference.

Listing 5-31 shows how to define a function to determine the number of employees for a given
department.

Listing 5-31. Creating a Stored Function Using PL/SQL

create or replace function emp_count(p_deptno in number)
return number is
 cnt number(2) := 0;
begin
 select count(*) into cnt
 from employees e
 where e.deptno = p_deptno;
 return (cnt);
end;
/

Function created.

Now it becomes relatively easy to produce an overview of all departments, with their (correct)

number of employees, as you can see in Listing 5-32. This query would be more complicated without
this function. In particular, department 40 (the well-known department without employees) would not
show up in your query results without some extra work. Without the stored function, you would need a
so-called OUTER JOIN (see Chapter 8) or you would need a subquery in the SELECT clause (see Chapter 9).

142

 CHAPTER 5 � RETRIEVAL: FUNCTIONS

Listing 5-32. Using the Stored Function

select deptno, dname, location
, emp_count(deptno)
from departments;

 DEPTNO DNAME LOCATION EMP_COUNT(DEPTNO)
-------- ---------- -------- -----------------
 10 ACCOUNTING NEW YORK 3
 20 TRAINING DALLAS 5
 30 SALES CHICAGO 6
 40 HR BOSTON 0

Listing 5-33 shows how the SQL*Plus DESCRIBE command treats these stored functions.

Listing 5-33. Describing a Stored Function

SQL> describe emp_count

FUNCTION emp_count RETURNS NUMBER

 Argument Name Type In/Out Default?
 ------------------------- --------------- ------ --------
 P_DEPTNO NUMBER IN

SQL>

5.9 Exercises
Use a database schema with the seven case tables (see Appendix C of this book) to perform the following
exercises. The answers are presented in Appendix D.

1. For all employees, provide their last name, a comma, followed by their initials.

2. For all employees, list their last name and date of birth, in a format such as
April 2nd, 1967.

3. On which day are (or were) you exactly 10,000 days old?
On which day of the week is (was) this?

4. Rewrite the example in Listing 5-23 using the NVL2 function.

5. Rewrite the example in Listing 5-24 to remove the DECODE functions using CASE
expressions, both in the SELECT clause and in the ORDER BY clause.

6. Rewrite the example in Listing 5-20 using DATE and INTERVAL constants, in such
a way that they become independent of the NLS_DATE_FORMAT setting.

143

CHAPTER 5 � RETRIEVAL: FUNCTIONS

144

7. Investigate the difference between the date formats WW and IW (week number
and ISO week number) using an arbitrary date, and explain your findings.

8. Look at Listing 5-15, where we use the REGEXP_INSTR function to search for
words. Rewrite this query using REGEXP_LIKE. Hint: You can use {n,} to express
“at least n times.”

C H A P T E R 6

� � �

Data Manipulation

In this chapter, you will learn how to change the contents of an Oracle database. The SQL commands to
change the database contents are commonly referred to as Data Manipulation Language (DML)
commands.

The first four sections of this chapter cover the DML commands INSERT, UPDATE, DELETE, and MERGE.
The first three commands have names that are self-explanatory. The fourth one, MERGE, allows you to
perform a mixture of insertions, updates, and deletions in a single statement, which is especially useful
in data warehousing environments without using a procedural language like PL/SQL.

� Note Many of the commands in this chapter modify data that is used in later chapters. It is important to issue
the ROLLBACK commands indicated in this chapter or to recreate the tables and data before continuing to
Chapter 7.

In production environments, especially when dealing with high-volume transactions, data
manipulation is mostly performed via database applications. In general, these database applications are
built (or generated) with application development tools such as Oracle Forms and Oracle JDeveloper.
Such applications offer a pleasant user-friendly interface to the database; however, they still use the
basic INSERT, UPDATE, and DELETE commands under the hood to communicate with the database, so you
should understand how these commands work. Additionally, sometimes “manual” data manipulation
via SQL*Developer and SQL*Plus can be very efficient. For example, you may want to perform global
updates (such as to change a certain column for all rows of a table at the same time) or to remove all
rows of a table.

Following are some of what we’ll cover in this chapter:

� In the first section (Section 6.1) we will introduce the INSERT command, which is
used to populate tables with data.

� The second section (Section 6.2) introduces the UPDATE command that modifies
data that is already in a table.

� Section 6.3 explains how to remove data from tables using DELETE.

� Section 6.4 introduces the MERGE statement, which is used to either INSERT or
UPDATE data depending on the rules you define.

� Section 6.5 explains the concept of transactions and introduces three transaction-
related SQL commands: COMMIT, SAVEPOINT, and ROLLBACK.This chapter is also the

145

CHAPTER 6 � DATA MANIPULATION

most obvious place in this book to pay some attention to read consistency and
locking. So, the last section (Section 6.6) discusses how the Oracle RDBMS
guarantees transaction isolation in a multiuser environment. It provides an
introduction to the concepts involved, without going into too many technical
details.

6.1 The INSERT Command
You use the INSERT command to add rows to a table. Along with the standard INSERT command, Oracle
SQL also supports a multitable INSERT which adds rows into several tables at one time. Multitable
inserts are an advanced topic and are not covered in this book.

Standard INSERT Commands
The standard INSERT command supports the following two ways to insert rows:

� Use the values clause, followed by a list of column values (between parentheses).
This method allows you to insert only one row at a time per execution of the
INSERT command.

� Formulate a subquery, thus using existing data to generate new rows.

Both alternatives are shown in the syntax diagram in Figure 6-1.

Figure 6-1. INSERT command syntax diagram

If you know all of the table columns, including the internal physical order in which they are
presented by the SQL*Plus DDESCRIBE command, you don’t need to specify column names after the table
name in the INSERT command. If you omit column names, you must provide precisely enough values and
specify them in the correct order.

146

 CHAPTER 6 � DATA MANIPULATION

� Caution Leaving out column names is rather dangerous, because your INSERT statement may become invalid
after nondestructive table modifications, such as adding columns. Column names also improve the readability of
your SQL statements.

In the VALUES clause, you can specify a comma-separated list of literals or an expression. You can use
the reserved word NULL to specify a null value for a specific column. You can also specify the reserved
word DEFAULT to instruct the Oracle DBMS to insert the default value associated with the corresponding
column. These default values are part of the table definition, stored in the data dictionary. If you don’t
specify a value for a specific column in your INSERT statement, there are two possibilities:

� If the column has an associated DEFAULT value, the Oracle DBMS will insert that
value.

� If you did not define a DEFAULT value for the column, the Oracle DBMS inserts a
null value (provided, of course, that the column allows null values).

� Note Because the Oracle DBMS will automatically insert the default value when another value isn’t specified,
the DEFAULT keyword isn’t really necessary for INSERT statements. However, the DEFAULT keyword can be quite
useful when writing UPDATE statements, which are discussed in Section 6.2.

The second way of using the INSERT command fills a table with a subquery. There are no special
constraints for these subqueries, as long as you make sure they produce the right number of values of
the right datatype. You can even use a subquery against the table into which you are inserting rows. This
sounds like a strange approach; however, insert into X select * from x is one of the fastest methods to
fill a table, provided you don’t have unique or primary key constraints.

� Note The fact that you are able to query and insert into the same table at the same time is due to Oracle’s read
consistency implementation. See Section 6.6 for details.

Listing 6-1 shows four INSERT statement examples: three using the VALUES clause and one using the
subquery method.

147

CHAPTER 6 � DATA MANIPULATION

Listing 6-1. Four INSERT Command Examples

insert into departments -- Example 1
values (90,'SUPPORT','SEATTLE', NULL);

1 row created.

insert into employees(empno,ename,init,bdate,msal,deptno) -- Example 2
values (7001,'ZOMBIE','ZZ',trunc(sysdate), 0, DEFAULT);

1 row created.

select * from employees where empno = 7001;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- ------ ---- --- --- ----------- ---- ---- ------
 7001 ZOMBIE ZZ 15-SEP-2004 0 10

insert into departments(dname,location,deptno) -- Example 3
values('CATERING','ORLANDO', 10);
insert into departments(dname,location,deptno)
*
ERROR at line 1:
ORA-00001: unique constraint (BOOK.D_PK) violated

insert into salgrades -- Example 4
select grade + 5
, lowerlimit + 2300
, least(9999, upperlimit + 2300)
, 500
from salgrades;

5 rows created.

rollback;
Rollback complete.

The examples work as follows:

� The first example inserts a new department 90 without specifying column names.
It also shows how you can insert a null value with the reserved word NULL.

� The second example shows how you can use DEFAULT to assign the default
department number to a new employee. (Chapter 7 explains how to assign such
default values.) The default value for the DEPTNO column of the EMPLOYEES table is
10, as you can see in Listing 6-1.

� The third example shows a violation of a primary key constraint; department 10
already exists.

� The fourth example shows how you can use a subquery to insert rows with the
INSERT command. It uses the LEAST function (introduced in Chapter 5) to avoid

148

 CHAPTER 6 � DATA MANIPULATION

constraint violations. The first argument (9999) ensures that the upper limit will
never become greater than 9999.

At the end of Listing 6-1, we use ROLLBACK to undo our changes. The ROLLBACK command is explained
in Section 6-5.

� Note After this chapter, we need all tables again in their unmodified state. Make sure to undo all changes you
apply in this chapter, or re-create the tables before proceeding with Chapter 7.

INSERT Using Subqueries
If existing data is the source for a table, using a subquery can speed up the process. As mentioned
already, it can also be used to rapidly populate a table with data from the table itself doubling the
number of rows with each insert. Listing 6-2 creates a table that we’ll insert some new data into. Listing
6-2 also shows the query that we’ll use to generate the data that we’ll be inserting. Listing 6-2 just gets
everything ready; Listing 6-3 is where we’ll do the actual INSERT statement.

Listing 6-2. Preparation for the INSERT using a subquery examples

CREATE TABLE dept_emp_names -- create a table to populate
(deptname VARCHAR2(10),
 location VARCHAR2(8),
 empname VARCHAR2(8),
 job VARCHAR2(8)
);

Table created.

SELECT d.dname, d.location, e.ename, e.job
FROM departments d, employees e
WHERE e.deptno = d.deptno;

DNAME LOCATION ENAME JOB
---------- -------- -------- --------
TRAINING DALLAS SMITH TRAINER
SALES CHICAGO ALLEN SALESREP
SALES CHICAGO WARD SALESREP
TRAINING DALLAS JONES MANAGER
SALES CHICAGO MARTIN SALESREP
SALES CHICAGO BLAKE MANAGER
ACCOUNTING NEW YORK CLARK MANAGER
TRAINING DALLAS SCOTT TRAINER
ACCOUNTING NEW YORK KING DIRECTOR
SALES CHICAGO TURNER SALESREP
TRAINING DALLAS ADAMS TRAINER
SALES CHICAGO JONES ADMIN
TRAINING DALLAS FORD TRAINER

149

CHAPTER 6 � DATA MANIPULATION

ACCOUNTING NEW YORK MILLER ADMIN

14 rows selected.

When performing DML, it is always a good idea to test it, where possible, by running a query or the

subquery first and verifying the results. Not only does this help you create the query before actually
modifying data, but it can also catch mistakes that might result in loss of data or the need to perform a
recovery. In Listing 6-2, the subquery that is used as the source for our intended insert is run and the
output displayed. Because the target table is empty before the insert, a query of the table after the insert
will display exactly the same data if the insert was executed properly.

Having confirmed from the output in Listing 6-2 that our query to generate data is correct, we can
use that query as a subquery to an insert statement. Listing 6-3 shows the results. The INSERT statement
in Listing 6-3 executes our query and inserts the resulting rows into the target table named
dept_emp_names.

Listing 6-3. Using subqueries to rapidly populate a table

INSERT INTO dept_emp_names -- Example 1
 (deptname, location, empname, job)
 (SELECT d.dname, d.location, e.ename, e.job
 FROM departments d, employees e
 WHERE e.deptno = d.deptno
);

14 rows created.

SELECT * -- Verify that the data is the same as Listing 6-2
FROM dept_emp_names;

DEPTNAME LOCATION EMPNAME JOB
---------- -------- -------- --------
TRAINING DALLAS SMITH TRAINER
SALES CHICAGO ALLEN SALESREP
SALES CHICAGO WARD SALESREP
TRAINING DALLAS JONES MANAGER
SALES CHICAGO MARTIN SALESREP
SALES CHICAGO BLAKE MANAGER
ACCOUNTING NEW YORK CLARK MANAGER
TRAINING DALLAS SCOTT TRAINER
ACCOUNTING NEW YORK KING DIRECTOR
SALES CHICAGO TURNER SALESREP
TRAINING DALLAS ADAMS TRAINER
SALES CHICAGO JONES ADMIN
TRAINING DALLAS FORD TRAINER
ACCOUNTING NEW YORK MILLER ADMIN

14 rows selected.

INSERT INTO dept_emp_names – Example 2
(SELECT *
 FROM dept_emp_names

150

 CHAPTER 6 � DATA MANIPULATION

);

14 rows created.

/

28 rows created.

/

56 rows created.

COMMIT;

Commit complete.

SELECT COUNT(1)
FROM dept_emp_names;

 COUNT(1)

 112

1 row selected.

The examples work as follows:

� In the first example, the subquery joining employees and departments creates a set
that is inserted into the table. As the subquery was properly formed and executed,
the rows in the table are the same as the rows from the query executed in Listing
6-2.

� The second example reads rows from the table and then inserts the same rows,
effectively doubling the number of rows in the table every time the INSERT
statement is executed. In this case, you do not need to specify the columns as the
source and target of the insert is the same table and columns cannot be changed
during the query and insert.

6.2 The UPDATE Command
You can change column values of existing rows in your tables with the UPDATE command. As shown in the
syntax diagram in Figure 6-2, the UPDATE command has three main components:

� UPDATE ...: The table you want to update

� SET ...: The change you want to apply

� WHERE ...: The rows to which you want to apply the change

151

CHAPTER 6 � DATA MANIPULATION

Figure 6-2. UPDATE command syntax diagram

If you omit the optional WHERE clause, the change is applied to all rows of the table. This illustrates
the fact that the UPDATE command operates at the table level, so you need the WHERE clause as the
relational restriction operator to limit the scope of the UPDATE command to a subset of the table.

As you can see from Figure 6-2, the SET clause offers two alternatives:

� You can specify a comma-separated list of single column changes. With this
approach, you can use the DEFAULT keyword as an expression. This allows you to
change column default values in the data dictionary at any point in time without
the need to change the UPDATE commands in your applications.

� You can drive the change with a subquery. The subquery must provide the right
number of values for the list of column names specified between the parentheses.
Of course, the datatypes should also match, or the Oracle DBMS should at least be
able to convert values to the appropriate datatypes on the fly.

The first approach is illustrated in Example 1 in Listing 6-4, and the second approach is shown in
Examples 2 and 3.

Listing 6-4. UPDATE Command Examples

update employees -- Example 1
set job = 'SALESREP'
, msal = msal - 500
, comm = 0
, deptno = 30
where empno = 7876;

1 row updated.

rollback;
Rollback complete.

UPDATE employees -- Example 2
SET deptno = (SELECT deptno
 FROM departments
 WHERE location = 'BOSTON')
WHERE empno = 7900;

152

 CHAPTER 6 � DATA MANIPULATION

1 row updated.

rollback;

Rollback complete.
UPDATE employees -- Example 3
SET (deptno,mgr) = (SELECT deptno,mgr
 FROM departments
 WHERE location = 'BOSTON')
WHERE empno = 7900;

1 row updated.

rollback;

Rollback complete.

The examples work as follows:

� In the first example, the employee with empno of 7876 has their job, msal, comm and
deptno updated with new values. In the case of msal, the new value is based on the
current (pre-UPDATE) value of the column.

� The second example uses a subquery to determine the value of deptno. For an
UPDATE, this subquery can return one and only one row. This type of subquery is
called a ‘scalar subquery’ and is addressed in more detail in Chapter 9.

� The third example also uses a subquery to determine the value of deptno and mgr.
Instead of having two different subqueries for deptno and mgr, you can use a scalar
subquery that returns multiple columns. The number, datatypes, and order of the
subquery columns must match the columns that are being updated.

As with the INSERT examples in Listing 6-1, in both of these listings, we use the ROLLBACK command
to undo any changes made.

A subquery can also be used to filter the records being updated. Instead of using a literal value, such
as DEPTNO = 20, a subquery can be used so that the update can be driven by data in a table. Listing 6-5
applies a subquery to the task of determining the department number.

Listing 6-5. UPDATE Command Examples Using WHERE subquery

UPDATE employees e -- Example 2
SET e.msal = e.msal * 1.1
WHERE e.deptno IN (SELECT d.deptno
 FROM departments d
 WHERE d.location = 'DALLAS'
);

5 rows updated.

rollback;

Rollback complete.

153

CHAPTER 6 � DATA MANIPULATION

6.3 The DELETE Command
The simplest data manipulation command is DELETE, as shown in the syntax diagram in Figure 6-3. This
command also operates at the table level, and you use the WHERE clause to restrict the set of rows you
want to delete from the table. If you omit the WHERE clause, the DELETE command results in an empty
table.

Figure 6-3. DELETE command syntax diagram

Note the difference between, but do not actually run, the following two commands:

drop table departments
delete from departments

The DROP TABLE command not only removes the contents of the table, but also the table itself,

including all dependent objects/structures such as indexes and privileges. DROP TABLE is a data definition
(DDL) command. The DELETE command does not change the database structure, but only the contents—
it is a data manipulation (DML) command. Moreover, the effects of a DROP TABLE command cannot be
undone with a ROLLBACK command, as opposed to the effects of a DELETE command, which can. (The
ROLLBACK command is introduced in Section 6.5.)

� Note In Chapter 7, you will see that there is a different way to get a table back after a DROP TABLE statement.

Listing 6-6 shows how you can delete a salary grade.

Listing 6-6. Example of a DELETE Command

select *
from salgrades;

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- ----------
 1 700 1200 0
 2 1201 1400 50
 3 1401 2000 100
 4 2001 3000 200
 5 3001 9999 500

154

 CHAPTER 6 � DATA MANIPULATION

delete from salgrades
where grade = 5;

1 row deleted.
select *
from salgrades;

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- ----------
 1 700 1200 0
 2 1201 1400 50
 3 1401 2000 100
 4 2001 3000 200

rollback;
Rollback complete.

To illustrate the fact that you can also use subqueries in the FROM clause of the DELETE statement,

Listing 6-7 shows an alternative formulation for the same DELETE statement. Again, we use the ROLLBACK
command to undo our changes.

Listing 6-7. Alternative DELETE Command, Using a Subquery

select *
from salgrades;

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- ----------
 1 700 1200 0
 2 1201 1400 50
 3 1401 2000 100
 4 2001 3000 200
 5 3001 9999 500

delete from (select *
 from salgrades
 where grade = 5);

1 row deleted.

select *
from salgrades;

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- ----------
 1 700 1200 0
 2 1201 1400 50
 3 1401 2000 100
 4 2001 3000 200

155

CHAPTER 6 � DATA MANIPULATION

rollback;
Rollback complete.

In this case, there are no obvious advantages to using a subquery over using a regular DELETE

statement.
You can use subqueries in the WHERE clause of the DELETE statement. Listing 6-8 shows how you can

use a subquery to filter the rows for the DELETE statement. In this case, the deptname ‘TRAINING’ is
returned from the subquery and used to filter out the deptname for the dept_emp_names table. Again,
we use the ROLLBACK command to undo our changes.

Listing 6-8. Alternative DELETE Command, Using a Subquery in the WHERE clause

DELETE FROM dept_emp_names
 WHERE deptname = (SELECT dname
 FROM departments
 WHERE location = 'DALLAS');

40 rows deleted.

rollback;

Rollback complete.

Deleting rows may seem rather straightforward, but you might encounter complications due to

constraint violations. In Listing 6-9, the delete fails because rows exist in a child table.

Listing 6-9. Unable to delete due to a constraint violation

DELETE FROM employees
 WHERE deptno IN (SELECT deptno
 FROM departments
 WHERE location = 'NEW YORK')
 /
DELETE FROM employees
*
ERROR at line 1:
ORA-02292: integrity constraint (BOOK.D_MGR_FK) violated - child record found

The same is true for the UPDATE and INSERT commands, by the way. Constraints are discussed in the

next chapter.
Because this section is about deleting rows, there is another SQL command that deserves mention

here: TRUNCATE. The TRUNCATE command allows you to delete all rows of a table in a more efficient way
than with the DELETE command. The TRUNCATE command belongs to the category of the data definition
(DDL) commands, and so it is covered in the next chapter.

156

 CHAPTER 6 � DATA MANIPULATION

6.4 The MERGE Command
The MERGE command is a rather strange one. It is able to perform insertions, updates, and deletions in a
single statement. This makes the MERGE command very efficient in data warehouse environments, where
the tables are often populated/updated from external sources. The MERGE command is able to react
appropriately to the existence (or nonexistence) of certain rows in the tables you are updating.

This book is not about data warehousing, so we will look at only a rather simple example of the
MERGE command to see how it operates. For more details, see Oracle SQL Reference and Oracle Data
Warehousing Guide.

Listing 6-10 shows the first step of our example, where we create and populate two small tables.
Both tables have three columns: a product ID, a cumulative quantity sold, and a product status.

Listing 6-10. Preparation for the MERGE Example

create table delta_tab
(pid number, sales number, status varchar2(6));
Table created.

create table master_tab
(pid number, sales number, status varchar2(6));
Table created.

insert into master_tab values(1,12,'CURR');
1 row created.

insert into master_tab values(2,13,'NEW');
1 row created.

insert into master_tab values(3,15,'CURR');
1 row created.

insert into delta_tab values(2,24,'CURR');
1 row created.

insert into delta_tab values(3, 0,'OBS');
1 row created.

insert into delta_tab values(4,42,'CURR');
1 row created.

commit;
Commit complete.

Listing 6-11 shows the starting point of our example, before we execute a MERGE command. In the

master table, we have three rows, for products 1, 2, and 3. In the delta table, we also have three rows, for
products 2, 3, and 4.

157

CHAPTER 6 � DATA MANIPULATION

Listing 6-11. Situation Before Executing the MERGE Command

select * from master_tab;

 PID SALES STATUS
-------- -------- ------
 1 12 CURR
 2 13 NEW
 3 15 CURR

select * from delta_tab;

 PID SALES STATUS
-------- -------- ------
 2 24 CURR
 3 0 OBS
 4 42 CURR

Now we use the MERGE command, as shown in Listing 6-12.

Listing 6-12. The MERGE Command and Its Effect on the MASTER_TAB Table

merge into master_tab m
 using delta_tab d
 on (m.pid = d.pid)
 when matched
 then update set m.sales = m.sales+d.sales
 , m.status = d.status
 delete where m.status = 'OBS'
 when not matched
 then insert values (d.pid,d.sales,'NEW');

3 rows merged.

select * from master_tab;

 PID SALES STATUS
-------- -------- ------
 1 12 CURR
 2 37 CURR
 4 42 NEW

In Listing 6-12, the first three command lines specify the roles of the two tables involved and the

joining condition between the two tables. Lines 5, 6, and 7 specify what must be done when processing a
row from the DELTA_TAB table if there is a matching row in the MASTER_TAB table. Line 9 specifies what
must be done when such a matching row does not exist.

Do you see what happened with the contents of the MASTER_TAB table?

158

 CHAPTER 6 � DATA MANIPULATION

� The first row is not touched, because the DELTA_TAB contains no row for product 1.

� The second row is updated: the SALES value is incremented with 24, and the STATUS
is set to CURR.

� The third (original) row is deleted, because after applying the UPDATE clause, the
DELETE condition became TRUE.

� The fourth row is inserted, because there was no row for product 4.

6.5 Transaction Processing
All DML changes (INSERT, UPDATE, DELETE, and MERGE) that you apply to the contents of the database
initially get a “pending” status. This means (among other things) that your session can see the changed
rows, but other database users will see the original data when they query the same table rows. Moreover,
as long as your changes are in this pending state, other database users will not be able to change those
rows, until you confirm or abandon your pending changes. The SQL command to confirm pending
changes to the database is COMMIT, and the command to abandon them is ROLLBACK. This allows you to
perform a number of changes, then confirm them with a COMMIT or abandon them with ROLLBACK, then
perform another number of changes, and so on.

COMMITand ROLLBACK end the current transaction and start a new one. A transaction is considered to
be a logical unit of work. In other words, a transaction is a set of changes that will succeed or fail as a
whole.

� Note The Oracle DBMS also allows you to define autonomous transactions using PL/SQL. These are
subtransactions that you can COMMIT or ROLLBACK independently from their main transactions. See PL/SQL User’s
Guide and Reference for details.

For example, account transfer transactions in a banking system normally consist of (at least) two
updates: a debit to account A and a credit to account B. In such situations, it makes a lot of sense to
COMMIT after each debit/credit combination, and not in between each update. What if something went
wrong (for example, the system crashed) after the debit update was committed but the credit update had
not been processed yet? You would end up with corrupted administration records. Moreover, even in the
absence of any disasters, a different database user could start a reporting application precisely at the
“wrong” moment in between the two updates, which would result in inconsistent financial reports.

On the other hand, if you wait too long before committing your changes, you risk losing your work
when the system crashes. During system .recovery, all pending transactions will be rolled back to
guarantee database consistency. This may be annoying, but it’s necessary.

By the way, this illustrates the fact that not only database users are able to issue explicit COMMIT and
ROLLBACK commands. Oracle tools can also issue those commands implicitly. For example, if you leave
SQL*Plus in a normal way with the EXIT or QUIT command, or if you create a new session with the
SQL*Plus CONNECT command, SQL*Plus first sends a COMMIT command to the database.

Another consequence of a delayed committing of your changes is that you block other database
users who want to update or delete the same rows. Section 6.6 discusses this locking behavior in a little
more detail.

159

CHAPTER 6 � DATA MANIPULATION

All DDL commands (such as CREATE, ALTER, DROP, GRANT, and REVOKE) always imply an implicit COMMIT.
To put it another way, each single DDL command is executed as a transaction in itself, consisting of a
single command, and is committed immediately.

6.6 Locking and Read Consistency
Normally, many users and applications access database systems at the same time. This is known as
concurrency. The RDBMS must make sure that concurrency is handled properly. The most drastic
approach for a RDBMS would be to handle all user transactions one by one, blocking all data exclusively
until the end of each transaction. Such a transaction serialization approach would result in unnecessary
and unacceptable wait times; the overall system throughput would be very poor.

RDBMSs like Oracle control concurrent data access with locking to prevent database users from
updating rows with pending (uncommitted) changes from other database users. This section gives some
information about how the Oracle RDBMS handles locking and concurrency.

Locking
To understand how the Oracle RDBMS handles locking, we need to identify a difference between two
categories of database users:

� Readers: Users retrieving data (issuing SELECT statements)

� Writers: Users changing data (issuing INSERT, UPDATE, DELETE, and MERGE
commands)

The Oracle RDBMS does not lock any data for retrieval. This means that readers never block readers.
Moreover, this also means that writers never need to wait for readers, and vice versa.

� Note The Oracle RDBMS’s handling of data locking does not mean that readers and writers do not hinder each
other in any way. Readers and writers can cause delays for each other by contending for certain system resources,
such as CPU.

Multiple database users trying to change the same rows need to wait for each other, so writers may
block other writers. Each attempt to change a row tries to acquire the corresponding row-level lock first.
If the lock cannot be acquired, you must wait until the pending change is committed or rolled back. All
row-level locks are released upon a COMMIT (explicit or implicit) or ROLLBACK. This means that the Oracle
DBMS tries to minimize locking overhead and tries to maximize throughput and concurrency.

� Note Only those rows that are actually being modified are locked. Many separate users and sessions can
simultaneously lock rows in a single table.

160

 CHAPTER 6 � DATA MANIPULATION

161

Read Consistency
In a database environment, read consistency is an important concept. Read consistency is a first
requirement to guarantee correct query results, regardless of how long it runs and regardless what else
happens simultaneously in the database. The Oracle RDBMS must make sure that each SQL query
creates a snapshot of the data at the point in time when the query started. It needs this snapshot because
a query should never see any uncommitted changes nor any changes that were committed after the
query started. Imagine the problems that would occur if one person was updating salaries (even making
mistakes that had to be rolled back) while another person was running a payroll report. Without read
consistency, the payroll report might include old salaries, new salaries and salary mistakes and there
would be no way to know which person was being paid incorrectly.

This means that the Oracle RDBMS must be able to reconstruct previous versions of the data in
order to process queries. We will not go into technical details here, but the Oracle RDBMS accomplishes
this by using information stored in undo segments. One way to think about undo segments is that they
contain the ‘before image’ of the data before any modification, though this is not technically precise.

Believe it or not, read consistency is even important in a single-user environment. Suppose that
upper management has decided to grant a salary raise of 50% to all employees who currently earn less
than the average salary of their department. You might want your salary to be checked last by the UPDATE
statement, hoping that earlier salary raises have influenced your department’s average salary in such a
way that you became entitled to a raise, too. In an Oracle environment, this hope is in vain, because the
read consistency mechanism will ensure that the subquery in the UPDATE statement (to derive the
average salary of your department) returns the same result, regardless of how often the subquery is re-
executed for the same department, within the scope of that single UPDATE command.

But note that because the Oracle RDBMS does not use any locking or other obstructive techniques
when you do this, you incur the risk that, at a point in time, the Oracle RDBMS will not be able to
reconstruct the desired original data anymore, especially if your query is running a long time. You get
the following error message in such situations:

ORA-01555: Snapshot too old

Oracle will never return data to a query that is inconsistent with the point in time at which the query

began. (You could term such data as being read inconsistent). Instead, Oracle terminates the query with
the “Snapshot too old” error. This error simply means that the query is unable to create the ‘before
image’ of the data as of the time the query started. Read consistency and the Oracle mechanisms used to
enforce it also insure the integrity of the data in the query.

This completes your introduction to data manipulation commands and concepts. You learned
about the four DML commands of the SQL language: INSERT, UPDATE, DELETE, and MERGE. Then we
discussed transaction processing, using the commands COMMIT, SAVEPOINT, and ROLLBACK. Finally, we
briefly discussed read consistency and locking, and introduced the SET TRANSACTION command, which
you can use to influence the default read consistency behavior of the Oracle DBMS.

Before continuing with Chapter 7, which returns to the topic of data definition, make sure that all of
your case tables are in their unmodified state. You should have rolled back all of the changes you applied
in this chapter. Alternatively, you can re-create the tables before proceeding.

C H A P T E R 7

� � �

Data Definition, Part II

Chapter 3 introduced just enough data definition (DDL) syntax to enable you to create the seven case
tables for this book, using simple CREATE TABLE commands without any constraint specifications. This
second DDL chapter goes into more detail about some data definition aspects, although it is still not
intended as a complete reference on the topic. (Discussion of the CREATE TABLE command alone covers
more than 100 pages in the Oracle Database documentation.)

The first two sections revisit the CREATE TABLE command and the datatypes supported by Oracle
Database 11g. Section 7.3 introduces the ALTER TABLE command, which allows you to change the
structure of an existing table (such as to add columns or change datatypes), and the RENAME command,
which allows you to rename a table or view. You will learn how to define and handle constraints in
Section 7.4.

Section 7.5 covers indexes. The main purpose of indexes is to improve performance (response time)
by providing more efficient access paths to table data. Thus, Section 7.6 provides a brief introduction to
performance, mainly in the context of checking if the optimizer is using your indexes.

The most efficient method to generate sequence numbers (for example, for order numbers) in an
Oracle environment is by using sequences, which are introduced in Section 7.7.

We continue with synonyms, in Section 7.8. By creating synonyms you can work with abbreviations
for table names, hide the schema name prefix of table names, or even hide the remote database where
the table resides. Section 7.9 explains the CURRENT_SCHEMA session parameter.

Section 7.10 discusses the DROP TABLE command and the recycle bin, a concept introduced in Oracle
Database 10g. By default, all dropped tables go to the recycle bin, allowing you to recover from human
errors.

The next two sections cover some other SQL commands related to data definition: TRUNCATE and
COMMENT.

7.1 The CREATE TABLE Command
Chapter 3 introduced the CREATE TABLE command and showed a basic command syntax diagram. This
section explores the CREATE TABLE command in a little more detail. Figure 7-1 shows a more (but still far
from) complete syntax diagram.

Figure 7-1 shows that the CREATE TABLE command supports two component types: column
specifications and constraint specifications.

163

CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-1. A CREATE TABLE command syntax diagram

You can provide an optional SSTORAGE clause, with various physical storage specifications for the

table you are creating. This is an important means to optimizing and spreading the physical storage of
your data on disk. For more information about the STORAGE clause and handling physical storage, see
Oracle SQL Reference.

According to the syntax diagram in Figure 7-1, you can also create new tables based on a subquery
with the AS clause. The CREATE TABLE ... AS SELECT ... command (also known as CTAS) is comparable to
one of the possibilities of the INSERT command shown in Figure 6-1 (in Chapter 6), where you insert rows
into an existing table using a subquery. The only difference is that with CTAS you create and populate
the table in a single SQL command. In this case, you can omit the column specifications between the
parentheses. If you want to use column specifications anyway, you are not allowed to specify datatypes.
In CTAS commands, the new table always inherits the datatypes from the results of the subquery.

The syntax for column specifications in a CREATE TABLE command is detailed in Figure 7-2.

Figure 7-2. A CREATE TABLE column specification syntax

Figure 7-2 shows that you can specify constraints in two ways:

� As independent (out-of-line) components of the CCREATE TABLE command (see
Figure 7-1)

� As inline constraints inside a column specification (see Figure 7-2)

We will discuss both types of constraints in Section 7.4.
You can use the DEFAULT option to specify a value (or an expression) to be used for INSERT

commands that don’t contain an explicit value for the corresponding column.

164

 CHAPTER 7 � DATA DEFINITION, PART II

7.2 More on Datatypes
Datatypes were introduced in Chapter 3. Table 7-1 provides a more complete overview of the most
important Oracle datatypes.

Table 7-1. Important Oracle Datatypes

Datatype Description

CHAR[(n)] Character string with fixed length n (default 1)

VARCHAR[2](n) Variable-length string; maximum n characters

DATE Date (between 4712 BC and 9999 AD)

TIMESTAMP Timestamp, with or without time zone information

INTERVAL Date/time interval

BLOB Unstructured binary data (Binary Large Object)

CLOB Large text (Character Large Object)

RAW(n) Binary data; maximum n bytes

NUMBER Can store any number, maximum precision and scale 38 digits

NUMBER(n) Integer; maximum n digits

NUMBER(n,m) Total of n digits; maximum m digits right of the decimal point

BINARY_FLOAT 32-bit floating-point number

BINARY_DOUBLE 64-bit floating-point number

� Note If you insert values into a NUMBER(n,m) column and you exceed precision n, you get an error message. If
you exceed scale m, the Oracle DBMS rounds the value.

The Oracle DBMS supports many datatype synonyms for portability with other DBMS
implementations and for compliance with the ANSI/ISO standard. For example, CHARACTER is identical to
CHAR; DECIMAL(n,m) is identical to NUMBER(n,m); and NUMBER even has multiple synonyms, such as INTEGER,
REAL, and SMALLINT.

165

CHAPTER 7 � DATA DEFINITION, PART II

Each Oracle datatype has its own precision or length limits, as shown in Table 7-2.

Table 7-2. Oracle Datatype Limits

Datatype Limit

NUMBER 38 digits

CHAR 2000

VARCHAR2 4000

RAW 2000 bytes

BLOB (4GB – 1) � (database block size)

CLOB (4GB – 1) � (database block size)

Character Datatypes
You may have noticed that Table 7-2 shows 2000 and 4000 for the CHAR and VARCHAR2 datatype limits,
respectively. You might wonder in which unit these numbers are expressed. That depends on the value
of the NLS_LENGTH_SEMANTICS parameter. The default for the Oracle DBMS is to use BYTE length
semantics. If you want to make your SQL code independent of this parameter, you can override its value
by using explicit BYTE and CHAR suffixes in your datatype specifications. Here are a couple examples:

� CHAR(42 BYTE): Fixed string, 42 bytes

� VARCHAR2(2000 CHAR): Variable string, maximum of 2000 characters

Comparison Semantics
The difference between VARCHAR2 and CHAR datatypes is the treatment of comparisons involving strings of
different lengths. There are two different semantics to compare strings of different lengths: padded
comparison (padding with spaces) and nonpadded comparison.

If you compare two strings, character by character, and all of the characters are identical until the
point where the shortest string is processed, nonpadded comparison semantics automatically “declares”
the longest string as being greater than the shorter string. On the other hand, padded comparison
semantics extends the shortest string with spaces until the length of the longest string, and continues
comparing characters. This means that trailing spaces in strings don’t influence padded comparison
results. Here are examples of the comparison types:

� Padded comparison: 'RAID5' = 'RAID5 '

� Nonpadded comparison: ' RAID5' < ' RAID5 '

By using the VARCHAR2 datatype, especially in all your SQL script files, you are guaranteed to get
nonpadded comparison semantics.

166

 CHAPTER 7 � DATA DEFINITION, PART II

Column Data Interpretation
There is an important difference between the RAW and VARCHAR2 datatypes. RAW column data (like BLOB
data) is never interpreted by the DBMS in any way. For example, VARCHAR2 column data is converted
automatically during transport from an ASCII to an EBCDIC environment. You typically use the RAW and
BLOB datatypes for columns containing binary data, such as scanned documents, sound tracks, and
movie fragments.

Numbers Revisited
Before we move on to the ALTER TABLE command in the next section, let’s briefly revisit numbers. The
Oracle DBMS has always stored NUMBER values in a proprietary internal format, to maintain maximum
portability to the impressive list of different platforms (operating systems) that it supports. The NUMBER
datatype is still the best choice for most columns containing numeric data. However, the internal storage
of this datatype implies some processing overhead, especially when you are performing many nontrivial
numerical computations in your SQL statements.

Since Oracle Database 10g you can also store floating-point numbers in your table columns.
Floating-point numbers don’t offer the same precision as NUMBER values, but they may result in better
response times for numerical computations. You can choose between two floating-point datatypes:

� BINARY_FLOAT: 32-bit, single precision

� BINARY_DOUBLE: 64-bit, double precision

You can also specify floating-point constants (literals) in your SQL statements with a suffix f (single
precision) or d (double precision), as shown in Listing 7-1.

Listing 7-1. Floating-Point Literals

SQL> select 5.1d, 42f from dual;

 5.1D 42F
---------- ----------
 5.1E+000 4.2E+001

SQL>

We won’t use these two floating-point datatypes in this book. See Oracle SQL Reference for more

details.

7.3 The ALTER TABLE and RENAME Commands
Sometimes, it is necessary to change the structure of existing tables. For example, you may find that the
maximum width of a certain column is defined too low, you might want to add an extra column to an
existing table, or you may need to modify a constraint. In these situations, you can use the ALTER TABLE
command. Figure 7-3 shows the syntax diagram for this command.

167

CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-3. An ALTER TABLE command syntax diagram

� Note The AALTER TABLE command is much more complicated and extended than Figure 7-3 suggests. See
Oracle SQL Reference for more details.

You can add columns or constraint definitions to an existing table with the ADD option. The MODIFY
option allows you to change definitions of existing columns. For example, you can widen a column,
allow null values with NULL, or prohibit null values with NOT NULL.

You can drop columns from tables with the DROP COLUMN option. You can also set columns to
“unused” with the ALTER TABLE ... SET UNUSED command, and physically remove them from the
database later with the ALTER TABLE ... DROP UNUSED COLUMNS command. This may be useful when
you want to drop multiple columns in a single scan (accessing the rows only once). The RENAME COLUMN
option allows you to change the name of a column.

� Caution You should be careful with the “destructive” DROP COLUMN option. Some database applications may
depend on the existence of the column you are dropping.

168

 CHAPTER 7 � DATA DEFINITION, PART II

With the constraint manipulation option, you can remove, enable, or disable constraints. Figure 7-
4 shows the syntax details of this ALTER TABLE command option. For more details about constraint
handling, see the next section.

Figure 7-4. ALTER TABLE constraint manipulation syntax

Just like the CCREATE TABLE command, the ALTER TABLE command also allows you to influence various
physical table storage attributes.

In general, you can apply any structure change to existing tables, even when they contain rows.
However, there are some exceptions. For example, for obvious reasons you cannot add a NOT NULL
column to a nonempty table, unless you immediately specify a DEFAULT value in the same ALTER TABLE
command. Listing 7-2 shows an example.

Listing 7-2. ALTER TABLE Command Example

SQL> alter table registrations
 2 add (entered_by number(4) default 7839 not null);

Table altered.

SQL> alter table registrations
 2 drop column entered_by;

Table altered.

SQL>

� Note The ALTER TABLE statement is probably the best illustration of the power of the relational model. Think
about this: you can change a table definition while the table contains data and applications are running.

The RENAME command is rather straightforward. It allows you to change the name of a table or view
(views are discussed in Chapter 10). Figure 7-5 shows the syntax diagram for the RENAME command.

169

CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-5. RENAME command syntax diagram

7.4 Constraints
As you saw in the previous sections, you can specify constraint definitions in the CCREATE TABLE and ALTER
TABLE commands. As noted earlier in the description of the CREATE TABLE command, you can treat
constraints as independent table components (for example, at the end of your CREATE TABLE command
after all column definitions) or as part of a column definition. A common terminology to distinguish
these two ways to specify constraints is out-of-line versus inline constraints.

For each constraint definition, you can optionally specify a constraint name. It is highly
recommended that you do so for all your constraint definitions. If you don’t specify a constraint name
yourself, the Oracle DBMS generates a far from informative name for you: SYS_Cnnnnn, where nnnnn is an
arbitrary sequence number. Once constraints are created, you need their names to manipulate (enable,
disable, or drop) them. Moreover, constraint names show up in constraint violation error messages.
Therefore, well-chosen constraint names make error messages more informative. See Listing 7-3 later in
this section for an example, showing a foreign key constraint violation.

Out-of-Line Constraints
Figure 7-6 shows the syntax details for out-of-line constraints. This syntax is slightly different from the
inline constraint syntax.

In the syntax diagram, col name list refers to a comma-separated list of one or more column
names. The type of constraint can be UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK. By default,
constraints become active immediately, unless you specify the DISABLE option; in other words, the
default option is ENABLE.

The four types of constraints work as follows:

� UNIQUE allows you to prevent duplicate values in a column or a column
combination.

� PRIMARY KEY and FOREIGN KEY allow you to implement entity integrity and
referential integrity. See Chapter 1 for a detailed discussion of these concepts.

� CHECK allows you to specify any arbitrary condition as a constraint.

Figure 7-7 shows the syntax details of a foreign key constraint reference (FK-REF in Figure 7-6).

170

 CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-6. Out-of-line constraint syntax diagram

Figure 7-7. Foreign key reference syntax diagram

You can omit the comma-separated list of column names (ccol name list in Figure 7-7) in the
foreign key reference. In that case, the foreign key constraint automatically refers to the primary key of
the referenced table.

� Tip In general, it is considered good practice to have foreign keys always refer to primary keys, although
foreign keys may also reference unique keys.

171

CHAPTER 7 � DATA DEFINITION, PART II

To understand the ON DELETE option of the foreign key reference, consider the example of a foreign
key constraint violation shown in Listing 7-3. Normally, it is impossible to remove parent (master) rows
if the database still contains child (detail) rows. In Listing 7-3, we try to remove the XML course while the
database still apparently contains XML course offerings.

Listing 7-3. Example of a Foreign Key Constraint Violation

SQL> delete from courses
 2 where code = 'XML';

delete from courses
*
ERROR at line 1:
ORA-02292: integrity constraint (BOOK.O_COURSE_FK) violated -
 child record found

SQL>

� Note Listing 7-10 shows the definition of the O_COURSE_FK constraint.

The ON DELETE CASCADE option (see Figure 7-7) changes the behavior in such situations. The
master/detail problems are solved by a cascading effect, in which, apart from the parent row, all child
rows are implicitly deleted, too. The ON DELETE SET NULL option solves the same problem in a different
way: the child rows are updated, rather than deleted. This approach is applicable only if the foreign key
columns involved may contain null values, of course.

Inline Constraints
The inline constraint syntax is shown in Figure 7-8. There are some subtle differences from the syntax for
out-of-line constraints:

� You don’t specify column names in inline constraints, because inline constraints
always belong to the column definition in which they are embedded.

� The foreign key constraint reference (FK-REF) is the same for both constraint types
(see Figure 7-7), but you don’t specify the keywords FOREIGN KEY for an inline
constraint—REFERENCES is enough.

� In the context of inline constraints, a NOT NULL constraint is allowed. In out-of-line
constraints, this is impossible, unless you rewrite it as a CHECK constraint.

172

 CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-8. Inline constraint syntax diagram

Constraint Definitions in the Data Dictionary
Constraint definitions are stored in the data dictionary. The two most important views are
UUSER_CONSTRAINTS and USER_CONS_COLUMNS. Listing 7-4 shows how you can produce an overview of all
referential integrity constraints for the current user.

Listing 7-4. Foreign Key Constraints in the Data Dictionary

SQL> select table_name
 2 , constraint_name
 3 , status
 4 , r_constraint_name as references
 5 from user_constraints
 6 where constraint_type = 'R';

TABLE_NAME CONSTRAINT_NAME STATUS REFERENCES
-------------------- -------------------- -------- ----------
EMPLOYEES E_MGR_FK ENABLED E_PK
DEPARTMENTS D_MGR_FK ENABLED E_PK
EMPLOYEES E_DEPT_FK ENABLED D_PK
OFFERINGS O_TRAIN_FK ENABLED E_PK
OFFERINGS O_COURSE_FK ENABLED C_PK
REGISTRATIONS R_OFF_FK ENABLED O_PK
REGISTRATIONS R_ATT_FK ENABLED E_PK
HISTORY H_DEPT_FK ENABLED D_PK
HISTORY H_EMPNO_FK ENABLED E_PK

SQL>

173

CHAPTER 7 � DATA DEFINITION, PART II

Tools like Oracle Forms can use constraint definitions from the data dictionary; for example, to
generate code for constraint checking in database applications.

Last but not least, the Oracle optimizer uses knowledge about constraint information from the data
dictionary to decide about efficient execution plans for SQL statements. To reiterate what we discussed
in Chapter 1, constraints are very important, and they must be defined in the database.

Case Table Definitions with Constraints
Listings 7-5 through 7-12 show the CREATE TABLE commands for the seven case tables of this book. The
constraints in these CREATE TABLE commands are meant to be self-explanatory, showing various
examples of PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK, and NOT NULL constraints.

� Note For more details about the seven case tables, refer to Appendix C of this book.

Listing 7-5. The EMPLOYEES Table

create table employees
(empno NUMBER(4) constraint E_PK primary key
 constraint E_EMPNO_CHK check (empno > 7000)
, ename VARCHAR2(8) constraint E_NAME_NN not null
, init VARCHAR2(5) constraint E_INIT_NN not null
, job VARCHAR2(8)
, mgr NUMBER(4) constraint E_MGR_FK references employees
, bdate DATE constraint E_BDAT_NN not null
, msal NUMBER(6,2) constraint E_MSAL_NN not null
, comm NUMBER(6,2)
, deptno NUMBER(2) default 10
, constraint E_SALES_CHK check
 (decode(job,'SALESREP',0,1)
 + nvl2(comm, 1,0) = 1)
) ;

Listing 7-6. The DEPARTMENTS Table

create table departments
(deptno NUMBER(2) constraint D_PK primary key
 constraint D_DEPTNO_CHK check (mod(deptno,10) = 0)
, dname VARCHAR2(10) constraint D_DNAME_NN not null
 constraint D_DNAME_UN unique
 constraint D_DNAME_CHK check (dname = upper(dname))
, location VARCHAR2(8) constraint D_LOC_NN not null
 constraint D_LOC_CHK check (location = upper(location))
, mgr NUMBER(4) constraint D_MGR_FK references employees
) ;

174

 CHAPTER 7 � DATA DEFINITION, PART II

Listing 7-7. Adding a Foreign Key Constraint

alter table employees add
(constraint E_DEPT_FK foreign key (deptno) references departments);

Listing 7-8. The SALGRADES Table

create table salgrades
(grade NUMBER(2) constraint S_PK primary key
, lowerlimit NUMBER(6,2) constraint S_LOWER_NN not null
 constraint S_LOWER_CHK check (lowerlimit >= 0)
, upperlimit NUMBER(6,2) constraint S_UPPER_NN not null
, bonus NUMBER(6,2) constraint S_BONUS_NN not null
, constraint S_LO_UP_CHK check
 (lowerlimit <= upperlimit)
) ;

Listing 7-9. The COURSES Table

create table courses
(code VARCHAR2(6) constraint C_PK primary key
, description VARCHAR2(30) constraint C_DESC_NN not null
, category CHAR(3) constraint C_CAT_NN not null
, duration NUMBER(2) constraint C_DUR_NN not null
, constraint C_CODE_CHK check
 (code = upper(code))
, constraint C_CAT_CHK check
 (category in ('GEN','BLD','DSG'))
) ;

Listing 7-10. The OFFERINGS Table

create table offerings
(course VARCHAR2(6) constraint O_COURSE_NN not null
 constraint O_COURSE_FK references courses
, begindate DATE constraint O_BEGIN_NN not null
, trainer NUMBER(4) constraint O_TRAIN_FK references employees
, location VARCHAR2(8)
, constraint O_PK primary key
 (course,begindate)
) ;

175

CHAPTER 7 � DATA DEFINITION, PART II

Listing 7-11. The REGISTRATIONS Table

create table registrations
(attendee NUMBER(4) constraint R_ATT_NN not null
 constraint R_ATT_FK references employees
, course VARCHAR2(6) constraint R_COURSE_NN not null
, begindate DATE constraint R_BEGIN_NN not null
, evaluation NUMBER(1) constraint R_EVAL_CHK check (evaluation in (1,2,3,4,5))
, constraint R_PK primary key
 (attendee,course,begindate)
, constraint R_OFF_FK foreign key (course,begindate)
 references offerings
) ;

Listing 7-12. The HISTORY Table

create table history
(empno NUMBER(4) constraint H_EMPNO_NN not null
 constraint H_EMPNO_FK references employees
 on delete cascade
, beginyear NUMBER(4) constraint H_BYEAR_NN not null
, begindate DATE constraint H_BDATE_NN not null
, enddate DATE
, deptno NUMBER(2) constraint H_DEPT_NN not null
 constraint H_DEPT_FK references departments
, msal NUMBER(6,2) constraint H_MSAL_NN not null
, comments VARCHAR2(60)
, constraint H_PK primary key (empno,begindate)
, constraint H_BEG_END check (begindate < enddate)
) ;

A Solution for Foreign Key References: CREATE SCHEMA
While we are on the topic of creating multiple tables, Oracle SQL also supports the ANSI/ISO standard
CREATE SCHEMA command. This command allows you to create a complete schema (consisting of tables,
views, and grants) with a single DDL command/transaction. One advantage of the CREATE SCHEMA
command is that it succeeds or fails as an atomic transaction. It also solves the problem of two tables
having foreign key references to each other (see Listings 7-5, 7-6, and 7-7), where you normally need at
least one ALTER TABLE command, because foreign keys can reference only existing tables.

Listing 7-13 shows how you could have created the case tables with the CREATE SCHEMA command.

Listing 7-13. The CREATE SCHEMA Command

SQL> create schema authorization BOOK
 2 create table employees (...)
 3 create table departments (...)
 4 create table salgrades (...)
 5 create table courses (...)
 6 create table offerings (...)

176

 CHAPTER 7 � DATA DEFINITION, PART II

 7 create table registrations (...)
 8 create table history (...)
 9 create view ... as select ... from ...
 10 grant select on ... to public;

� Note The name of this command (as implemented by Oracle) is confusing, because it does not actually create a
schema. Oracle schemas are created with the CREATE USER command. The command succeeds only if the
schema name is the same as your Oracle database username.

You can specify the CREATE SCHEMA command components in any order. Within each component
definition, you can refer to other (earlier or later) schema components.

Deferrable Constraints
The Oracle DBMS also supports deferrable constraints, allowing you to specify when you want the
constraints to be checked. These are the two possibilities:

� IMMEDIATE checks at the statement level.

� DEFERRED checks at the end of the transaction.

Before you can use this distinction, you must first allow a constraint to be deferrable. The default
option for all constraints that you create is NOT DEFERRABLE. If you want your constraints to be deferrable,
add the DEFERRABLE option in the constraint definition, as shown in Figure 7-9, just before the storage
clause specification (see Figures 7-6 and 7-8).

Figure 7-9. DEFERRABLE option for constraint definitions

If you allow constraints to be deferrable using the DDEFERRABLE option, they still have a default
behavior of INITIALLY IMMEDIATE. The INITIALLY option allows you to specify the desired default
constraint checking behavior, using IMMEDIATE or DEFERRED.

You can dynamically change or override the default behavior of deferrable constraints at the
transaction level with the SET CONSTRAINTS command, as shown in Figure 7-10.

177

CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-10. SET CONSTRAINTS command syntax diagram

At first sight, the complexity of all this constraint-checking syntax may look overwhelming. The
following summary may help clarify how it works:

� By default, the Oracle DBMS always uses immediate constraint checking.

� You must explicitly allow a constraint to be deferrable. By default, constraints are
not deferrable.

� If constraints are deferrable, you can choose how they should be checked by
default: immediate or deferred.

� If constraints are deferrable, you can influence their behavior with the SSET
CONSTRAINTS command.

7.5 Indexes
In general, rows within a regular table are unordered. Although the Oracle DBMS offers many different
ways to physically organize tables on disk (heap tables, index clusters, hash clusters, index-organized
tables, and sorted hash clusters), you should never expect the rows to be physically stored in a certain
order. Even if a particular order exists today, there is no guarantee that it will be the same tomorrow.
This is a fundamental property of relational databases (see Ted Codd’s rule 8 in Chapter 1 about physical
data independence).

Suppose the EMPLOYEES table contains 50,000 rows (instead of the 14 rows we have), and suppose
you want to know which employees have a name starting with a Q. Normally, the Oracle DBMS can use
only one method to produce the results for this query: by accessing all 50,000 rows (with a full table scan)
and checking the name for each of those rows. This could take quite some time, and perhaps there
would be no employees at all with such a name.

An index on employee names would be very useful in this situation. When you create an index, the
Oracle DBMS creates, and starts to maintain, a separate database object containing a sorted list of
column values (or column combination values) with row identifiers referring to the corresponding rows
in the table. To further optimize access, indexes are internally organized in a tree structure. (See Oracle
Concepts for more details on physical index structures.) If there were such an index on employee names,
the optimizer could decide to abandon the full table scan approach and perform an index search
instead. The index offers a very efficient access path to all names, returning all row identifiers of
employees with a name starting with a Q. This probably would result in a huge performance
improvement, because there are only a few database blocks to be visited to produce the query result.

178

 CHAPTER 7 � DATA DEFINITION, PART II

For some of your other queries, indexes on department numbers or birth dates could be useful. You
can create as many indexes per table as you like.

In summary, the performance of your SQL statements can often be improved significantly by
creating indexes. Sometimes, it is obvious that an index will help, such as when your tables contain a lot
of rows and your queries are very selective (only retrieving a few rows). On the other hand, though, you
may find that your application benefits from an index on a single-row, single-column table.

Indexes may speed up queries, but the other side of the index picture is the maintenance overhead.
Every additional index slows down data manipulation further, because every INSERT/UPDATE/DELETE
statement against a table must immediately be processed against all corresponding indexes to keep the
indexes synchronized with the table. Also, indexes occupy additional space in your database. This means
that you should carefully consider which columns should be indexed and which ones should not be
indexed.

These are some suggestions for index candidates:

� Foreign key columns

� Columns often used in WHERE clauses

� Columns often used in ORDER BY and GROUP BY clauses

Here, we’ll look at the commands for index creation and management.

Index Creation
Figure 7-11 shows the (simplified) syntax of the CREATE INDEX command.

Figure 7-11. CREATE INDEX command syntax diagram

The sstorage clause allows you to influence various physical index storage attributes, such as the
storage location and the space allocation behavior. See the Oracle SQL Reference for more details. If the
table rows happen to be inserted and stored in index order, you can specify the NOSORT option to speed
up index creation. The Oracle DBMS will skip the sort phase (normally needed during index creation),
but if the rows turn out to be in the wrong order, the CREATE INDEX command will fail with an error
message.

179

CHAPTER 7 � DATA DEFINITION, PART II

Unique Indexes
Unique indexes serve two purposes: they provide additional access paths to improve response times
(like nonunique indexes), and they also prevent duplicate values. You create unique indexes by
specifying the UNIQUE option of the CREATE INDEX command (see Figure 7-11).

Note, however, that it is recommended to ensure uniqueness in your tables using the PRIMARY KEY
and UNIQUE constraints, leaving it up to the Oracle DBMS to choose an appropriate physical
implementation of those constraints.

Bitmap Indexes
Regular indexes work the best if the corresponding columns contain many different values, resulting in
better selectivity. Unique indexes offer the best selectivity, because they contain only different values.
This means that every equality search (... WHERE COL = ...) results in at most one row. At the other side
of the spectrum, if a column contains only a few values (typical examples are gender, status, and yes/no
columns), a regular index is not very useful, because the average selectivity of equality searches will be
poor.

For such low-cardinality columns, the Oracle DBMS supports bitmap indexes. Bitmap indexes may
also outperform regular indexes if your WHERE clause is complicated, using many AND, OR, and NOT
connectives. You create bitmap indexes by specifying the BITMAP option (see Figure 7-11).

� Caution Indexes slow down data manipulation, and bitmap indexes are the most expensive index type in terms
of maintenance. Don’t create bitmap indexes on tables with a lot of DML activity.

Function-Based Indexes
As Figure 7-11 shows, you can specify an expression between the parentheses when defining the table
columns to be indexed. That means that instead of simply specifying a single column or a comma-
separated list of columns, you can choose to specify a more complicated expression in an index
definition. Indexes containing such expressions are referred to as function-based indexes. See Listing 7-
14 for an example, where we create an index on an expression for the yearly salary.

Listing 7-14. Creating a Function-Based Index

SQL> create index year_sal_idx
 2 on employees (12*msal + coalesce(comm,0));
Index created.

SQL>

The index we created in Listing 7-14 can provide an efficient access path for the Oracle DBMS to

produce the result of the following query:

SQL> select * from employees where 12*msal+coalesce(comm,0) > 18000;

180

 CHAPTER 7 � DATA DEFINITION, PART II

Function-based indexes can be used in combination with various NLS features to enable linguistic
sorting and searching. See Oracle SQL Reference and Oracle Globalization Support Guide for more
details.

Index Management
Since indexes are maintained by the Oracle DBMS, each table change is immediately propagated to the
indexes. In other words, indexes are always up-to-date. However, if your tables incur continuous and
heavy DML activity, you might want to consider rebuilding your indexes. Of course, you could simply
drop them and then re-create them. However, using the ALTER INDEX ... REBUILD or ALTER INDEX ...
COALESCE command is more efficient. Figure 7-12 shows the (partial) syntax diagram for the ALTER INDEX
command.

Figure 7-12. ALTER INDEX command syntax diagram

The various AALTER INDEX command options in Figure 7-12 (which is far from complete) show that
this command belongs to the purview of database administrators, so we will not discuss them here.

� Note The ENABLE and DISABLE options of the ALTER INDEX command (see Figure 7-12) apply only to function-
based indexes. If you set indexes to UNUSABLE, you must REBUILD (or DROP and CREATE) them before they can be
used again.

181

CHAPTER 7 � DATA DEFINITION, PART II

You can remove indexes with the DROP INDEX command. Figure 7-13 shows the syntax diagram for
DROP INDEX.

Figure 7-13. DROP INDEX command syntax diagram

Here is an example of removing an index:

SSQL> drop index year_sal_idx;
Index dropped.

SQL>

� Tip In periods of heavy data-manipulation activity, without a lot of reporting (retrieval) activity, you may consider
dropping indexes temporarily, and re-creating them later.

When you’re working with indexes, keep in mind that although you can decide about index
existence with the CREATE INDEX and DROP INDEX commands, the Oracle optimizer decides about index
usage. The optimizer chooses the execution plan for each SQL statement. The next section explains how
you can see if the optimizer is using your indexes.

7.6 Performance Monitoring with SQL Developer AUTOTRACE
This is not a book about SQL performance tuning. However, in a chapter where we talk about creating
indexes, it makes sense to at least show how you can see whether the indexes you create are actually
used. What you need for that purpose is a way to see SQL execution plans.

Oracle provides many diagnostic tools (such as the SQL trace facility, TKPROF, and EXPLAIN PLAN) to
help you with your performance-tuning efforts. However, discussion of these useful Oracle tools is not
appropriate here; see Oracle Performance Tuning Guide for more details. Fortunately, SQL Developer
offers a limited but user-friendly alternative for those diagnostic tools: the AUTOTRACE facility.

If you want to use all of the options of the AUTOTRACE setting, you may need to prepare your Oracle
environment:

� SQL Developer assumes the existence of a PLAN_TABLE table to store execution
plans. If necessary, you can create a local copy in your own schema with the
utlxplan.sql script. Oracle Database 10g and above has a public synonym
PLAN_TABLE, pointing to a global temporary table. Creating a local PLAN_TABLE is
necessary only in earlier releases.

� You must have sufficient privileges for certain AUTOTRACE features. You need the
SELECT_CATALOG_ROLE and SELECT ANY DICTIONARY privileges. These grants must be

182

 CHAPTER 7 � DATA DEFINITION, PART II

executed from the SYSTEM database user account. If you don’t have access to that
privileged account, contact your local database administrator.

Your display preferences for AUTOTRACE output can be modified by selecting Tools � Preferences �
Database � Autotrace � Explain Plan. By clicking the checkboxes for the values you wish to display, you
can customize your Autotrace output to your needs. Figure 7-14 shows the preferences I typically use
and recommend.

Figure 7-14. SQL Developer AUTOTRACE Preferences settings

After you have verified your privileges and set your display preferences, you can use AUTOTRACE. You
may use either the F10 key, the AUTOTRACE toolbar button, or simply execute the query and click on
the Autotrace tab to view the output. SQL Developer will execute the query, then show the execution
plan and resource statistics that you chose in your Preferences settings. Figure 7-15 shows an example of
using AUTOTRACE.

183

CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-15. SQL Developer AUTOTRACE output

From Figure 7-15, you can see that the optimizer decided to use the unique index E_PK for a range
scan, and it chose to access the EMPLOYEES table using the row identifiers resulting from the index range
scan.

By choosing the Display Preference for V$MYSTAT, a list of performance-related statement
execution statistics is captured and displayed beneath the execution plan. A detailed discussion of these
statistics is not appropriate here, but you can see (for example) that no data was read from disk (physical
reads) and six buffer cache block visits (consistent gets and db block gets) were needed.

� Note If you use EXPLAIN, the SQL statement is not executed. This is because you ask for only an execution
plan, not for statement results and not for execution statistics.

184

 CHAPTER 7 � DATA DEFINITION, PART II

7.7 Sequences
Information systems often use monotonically increasing sequence numbers for primary key columns,
such as for orders, shipments, registrations, or invoices. You could implement this functionality with a
small secondary table to maintain the last/current value for each primary key, but this approach is
guaranteed to create performance problems in a multiuser environment. It is much better to use
sequences in such cases.

Before we continue, there is one important thing you should know about sequences: sequence
values can show gaps. That means that certain sequence values may disappear and never make it into
the column they were meant for. The Oracle DBMS cannot guarantee sequences without gaps (we won’t
go into the technical details of why this is true). Normally, this should not be a problem. Primary key
values are supposed to be unique, and increasing values are nice for sorting purposes, but there is no
reason why you shouldn’t allow gaps in the values. However, if the absence of gaps is a business
requirement, you have no choice other than using a small secondary table to maintain these values.

� Note If “absence of gaps” is one of your business requirements, then you probably have a poorly conceived
business requirement. You should consider investing some time into reforming your business requirements.

Sequences can be created, changed, and dropped with the following three SQL commands:

� CREATE SEQUENCE

� ALTER SEQUENCE

� DROP SEQUENCE

Figure 7-16 shows the syntax diagram of the CREATE SEQUENCE command. The ALTER SEQUENCE
command has a similar syntax.

Figure 7-16. A CREATE SEQUENCE command syntax diagram

A sequence definition may consist of a start value, increment value, minimum value, and maximum
value. You can also specify whether the sequence generator should stop when reaching a boundary
value, or CCYCLE the sequence numbers within the minimum/maximum range. All sequence attributes are
optional, as Figure 7-16 shows; they all have default values.

185

CHAPTER 7 � DATA DEFINITION, PART II

Each sequence has two pseudo columns: NEXTVAL and CURRVAL. The meaning of each of these
columns is self-explanatory. Listing 7-15 shows how you can create and use a sequence DEPTNO_SEQ to
generate department numbers, using the DUAL table. (Note that normally you would use sequence values
in INSERT statements.)

Listing 7-15. Creating and Using a Sequence

SQL> create sequence deptno_seq
 2 start with 50 increment by 10;

Sequence created.

SQL> select deptno_seq.nextval, deptno_seq.currval from dual;

 NEXTVAL CURRVAL
-------- --------
 50 50

SQL> select deptno_seq.currval from dual;

 CURRVAL

 50

SQL> select deptno_seq.currval, deptno_seq.nextval from dual;

 CURRVAL NEXTVAL
-------- --------
 60 60

SQL>

You can use CURRVAL multiple times, in different SQL statements, once you have selected NEXTVAL in

an earlier statement, as shown in Listing 7-15. For example, in an order-entry system, you might select a
sequence value with NEXTVAL to insert a new order, and then use the same value (CURRVAL) several times
to insert multiple line items for that order.

Note the result of the last query in Listing 7-15. Since you select CURRVAL before NEXTVAL in the SELECT
clause, you might expect to see the current value (50), followed by the next value (60), but apparently
that is not the case. This behavior is based on the consistency principle that it doesn’t matter in which
order you specify the expressions in the SELECT clause of your queries, because you actually select those
expressions at the same time. Try selecting NEXTVAL multiple times in the same SELECT clause and see
what happens (the explanation is the same).

7.8 Synonyms
You can use the CREATE SYNONYM command to create synonyms for tables or views. Once created, you can
use synonyms in all your SQL commands instead of “real” table (and view) names. For example, you
could use synonyms for tables with very long table names.

186

 CHAPTER 7 � DATA DEFINITION, PART II

Synonyms are especially useful if you are accessing tables from different schemas, not owned by
yourself. Without synonyms, you must explicitly prefix those object names with the schema name and a
period. The Oracle data dictionary is a perfect example of synonym usage. You can simply specify the
data dictionary view names in your queries, without any prefix, although you obviously don’t own those
data dictionary objects.

Synonyms are a “convenience” feature. They don’t provide any additional privileges, and they don’t
create security risks. They just save you some typing, and they also allow you to make your applications
schema-independent.

Schema-independence is important. By using synonyms, your applications don’t need to contain
explicit schema names. This makes your applications more flexible and easier to maintain, because the
mapping to physical schema and object names is in the synonym definitions, separated from the
application code.

Figure 7-17 shows the syntax diagram for the CREATE SYNONYM command.

Figure 7-17. A CREATE SYNONYM command syntax diagram

Oracle supports public and private synonyms, as you can see in Figure 7-17. By default, synonyms
are private. You need to specify the PPUBLIC keyword to create public synonyms. All database users can
use public synonyms, but you need DBA privileges to be able to create them. The synonyms for the data
dictionary objects are examples of public synonyms. Anyone can create private synonyms, but only their
owners can use them.

� Caution Although synonyms are useful, they can also cause performance problems. In particular, public
synonyms are known to cause such problems. For further details, go to Steve Adams’s web site
(http://www.ixora.com.au) and search for “avoiding public synonyms.”

Listing 7-16 shows how you can create a synonym, how the synonym shows up in the data
dictionary views CAT and USER_SYNONYMS, and how you can drop a synonym.

Listing 7-16. Creating and Dropping a Synonym

SQL> create synonym e for employees;
Synonym created.

187

CHAPTER 7 � DATA DEFINITION, PART II

SQL> describe e
Name Null? Type
------------------------ -------- ------------
EMPNO NOT NULL NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)
JOB VARCHAR2(8)
MGR NUMBER(4)
BDATE NOT NULL DATE
MSAL NOT NULL NUMBER(6,2)
COMM NUMBER(6,2)
DEPTNO NUMBER(2)

SQL> select * from cat;

TABLE_NAME TABLE_TYPE
-------------------- -----------
EMPLOYEES TABLE
DEPARTMENTS TABLE
SALGRADES TABLE
COURSES TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
HISTORY TABLE
DEPTNO_SEQ SEQUENCE
E SYNONYM

SQL> select synonym_name, table_owner, table_name
 2 from user_synonyms;

SYNONYM_NAME TABLE_OWNER TABLE_NAME
-------------------- ----------- ----------------
E BOOK EMPLOYEES

SQL> drop synonym e;
Synonym dropped.

SQL>

Synonyms are often used in distributed database environments to implement full data

independence. The user (or database application) does not need to know where (in which database)
tables or views are located. Normally, you need to specify explicit database links using the at sign (@) in
the object name, but synonyms can hide those database link references.

7.9 The CURRENT_SCHEMA Setting
The ALTER SESSION command provides another convenient way to save you the effort of prefixing object
names with their schema name, but without using synonyms. This is another “convenience” feature, just
like synonyms.

188

 CHAPTER 7 � DATA DEFINITION, PART II

Suppose the demo schema SCOTT (with the EMP and DEPT tables) is present in your database, and
suppose you are currently connected as database user BOOK. In that situation, you can use the ALTER
SESSION command as shown in Listing 7-17.

Listing 7-17. The CURRENT_SCHEMA Setting

SQL> alter session set current_schema=scott;
Session altered.

SQL> show user
USER is "BOOK"

SQL> select * from dept;

 DEPTNO DNAME LOC
-------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

SQL> alter session set current_schema=book;
Session altered.

SQL>

You can compare the CURRENT_SCHEMA setting in the database with the change directory (cd)

command at the operating system level. In a similar way, it allows you to address all objects locally.
Again, this does not change anything with regard to security and privileges. If you really want to

assume the identity of a schema owner, you must use the SQL*Plus CONNECT command, and provide the
username/schema name and the corresponding password.

7.10 The DROP TABLE Command
You can drop your tables with the DROP TABLE command. Figure 7-18 shows the syntax diagram for the
DROP TABLE command.

Figure 7-18. A DROP TABLE command syntax diagram

189

CHAPTER 7 � DATA DEFINITION, PART II

Unless you have specific system privileges, you cannot drop tables owned by other database users.
Also, you cannot roll back a DROP TABLE command. As you’ve learned in previous chapters, this is true for
all DDL statements (CREATE, ALTER, and DROP).

“Errare humanum est,” as the Romans said. Because human errors occur occasionally, Oracle
Database 10g introduced the concept of the database recycle bin. By default, all dropped tables (and their
dependent objects) initially end up in the recycle bin. You can query the recycle bin using the
[USER_]RECYCLEBIN view, as shown in Listing 7-18. To make sure we start with an empty recycle bin, we
begin the experiment with a PURGE command.

Listing 7-18. Dropping Tables and Querying the Recycle Bin

SQL> purge recyclebin;
Recyclebin purged.

SQL> drop table history;
Table dropped.

SQL> select object_name, original_name, droptime
 2 from recyclebin;

OBJECT_NAME ORIGINAL_NAME DROPTIME
------------------------------ ---------------------- -------------------
BIN$mlRH1je9TBOeVEUhukIpCw==$0 H_PK 2004-07-01:20:22:23
BIN$EETkZCY0RSKCR3BhtF9cJw==$0 HISTORY 2004-07-01:20:22:23

SQL>

As you can see, the objects are renamed, but the original names are kept as well. There is one entry

for the HISTORY table and one entry for the primary key index. You can recover tables (and optionally
rename them) from the recycle bin by using the FLASHBACK TABLEcommand:

SQL> flashback table history to before drop
 2 [rename to <new name>];
Flashback complete.

SQL>

� Caution There is no guarantee the FLASHBACK TABLE command always succeeds. The recycle bin can be
purged explicitly (by a database administrator) or implicitly (by the Oracle DBMS).

If you want to drop a table and bypass the recycle bin, you can use the PURGE option of the DROP
TABLE command, as shown in Figure 7-18.

If you drop a table, you implicitly drop certain dependent database objects, such as indexes,
triggers, and table privileges granted to other database users. You also invalidate certain other database
objects, such as views and packages. Keep this in mind during database reorganizations. To re-create a

190

 CHAPTER 7 � DATA DEFINITION, PART II

table, it is not enough to simply issue a CREATE TABLE command after a DROP TABLE command. You need
to reestablish the full environment around the dropped table.

If you issue a DROP TABLE command, you may get the following error message if other tables contain
foreign key constraints referencing the table that you are trying to drop:

ORA-02449: unique/primary keys in table referenced by foreign keys

Try to drop the EMPLOYEES table, and see what happens. You can solve this problem by using the
CASCADE CONSTRAINTS option, as shown in Figure 7-18. Note, however, that this means that all offending
foreign key constraints are dropped, too.

7.11 The TRUNCATE Command
The TRUNCATE command allows you to delete all rows from a table. Figure 7-19 shows the syntax diagram
for the TRUNCATE command.

Figure 7-19. A TRUNCATE command syntax diagram

The default behavior is DDROP STORAGE, as indicated by the underlining in Figure 7-19.
Compared with DROP TABLE (followed by a CREATE TABLE), the big advantage of TRUNCATE is that all

related indexes and privileges survive the TRUNCATE operation.
This command has two possible advantages over the DELETE command: the performance (response

time) is typically better for large tables, and you can optionally reclaim the allocated space. However,
there is a price to pay for these two advantages: you cannot perform a ROLLBACK to undo a TRUNCATE,
because TRUNCATE is a DDL command. The Oracle DBMS treats DDL commands as single-statement
transactions and commits them immediately.

7.12 The COMMENT Command
The COMMENT command allows you to add clarifying (semantic) explanations about tables and table
columns to the data dictionary. Figure 7-20 shows the syntax diagram for this command.

191

CHAPTER 7 � DATA DEFINITION, PART II

Figure 7-20. A COMMENT command syntax diagram

Listing 7-19 shows how you can use the CCOMMENT command to add comments to the data dictionary
for a table (SALGRADES) and a column (EMPLOYEES.COMM), and how you can retrieve that information from
the data dictionary.

Listing 7-19. Adding Comments to Columns and Tables

SQL> comment on table salgrades
 2 is 'Salary grades and net bonuses';
Comment created.

SQL> comment on column employees.comm
 2 is 'For sales reps only';
Comment created.

SQL> select comments
 2 from user_tab_comments
 3 where table_name = 'SALGRADES';

COMMENTS

Salary grades and net bonuses

SQL> select comments
 2 from user_col_comments
 3 where table_name = 'EMPLOYEES'
 4 and column_name = 'COMM';

COMMENTS

For sales reps only

SQL>

Think of adding comments like documentation. The little extra effort to document your columns

and tables will help define and clarify your objects if questions arise in the future.

192

 CHAPTER 7 � DATA DEFINITION, PART II

193

7.13 Exercises
The following exercises will help you to better understand the concepts described in this chapter. The
answers are presented in Appendix D.

1. Listing 7-5 defines the constraint E_SALES_CHK in a rather cryptic way.
Formulate the same constraint without using DECODE and NVL2.

2. Why do you think the constraint E_DEPT_FK (in Listing 7-7) is created with a
separate ALTER TABLE command?

3. Although this is not covered in this chapter, try to come up with an
explanation of the following phenomenon: when using sequences, you cannot
use the pseudo column CURRVAL in your session without first calling the pseudo
column NEXTVAL:

 SQL> select deptno_seq.currval from dual;
 select deptno_seq.currval from dual
 *
 ERROR at line 1:
 ORA-08002: sequence DEPTNO_SEQ.CURRVAL is not yet defined in this session

 SQL>

4. Why is it better to use sequences in a multiuser environment, as opposed to
maintaining a secondary table with the last/current sequence values?

5. How is it possible that the EVALUATION column of the REGISTRATIONS table
accepts null values, in spite of the constraint R_EVAL_CHK (see Listing 7-11)?

6. If you define a PRIMARY KEY or UNIQUE constraint, the Oracle DBMS normally
creates a unique index under the covers (if none of the existing indexes can be
used) to check the constraint. Investigate and explain what happens if you
define such a constraint as DEFERRABLE.

7. You can use function-based indexes to implement “conditional uniqueness”
constraints. Create a unique function-based index on the REGISTRATIONS table
to check the following constraint: employees are allowed to attend the OAU
course only once. They may attend other courses as many times as they like.
Test your solution with the following command (it should fail):

 SQL> insert into registrations values (7900,'OAU',trunc(sysdate),null);

 Hint: You can use a CASE expression in the index expression.

C H A P T E R 8

� � �

Retrieval: Multiple Tables
and Aggregation

This chapter resumes the discussion of the retrieval possibilities of the SQL language. It is a logical
continuation of Chapters 4 and 5.

The first section introduces the concept of row or tuple variables. We did not discuss them so far,
because we haven’t needed them up to now. By the way, most SQL textbooks don’t mention tuple
variables at all—at least not the way this book does. When you start specifying multiple tables in the FROM
clause of your SELECT statements, it is a good idea to start using tuple variables (also referred to as table
aliases in Oracle) in a consistent way.

Section 8.2 explains joins, which specify a comma-separated list of table names in the FROM clause
and filter the desired row combinations with the WHERE clause. Section 8.3 shows the ANSI/ISO standard
syntax to produce joins (supported since Oracle9i), and Section 8.4 goes into more details about outer
joins.

In large information systems (containing huge amounts of detailed information), it is quite common
to be interested in aggregated (condensed) information. For example, you may want to get a course
overview for a specific year, showing the number of attendees per course, with the average evaluation
scores. You can formulate the underlying queries you need for such reports by using the GROUP BY clause
of the SELECT command. Group functions (such as COUNT, AVG, MIN, and MAX) play an important role in
such queries. If you have aggregated your data with a GROUP BY clause, you can optionally use the HAVING
clause to filter query results at the group level. Topics surrounding basic aggregation are covered in
Sections 8.5, 8.6, and 8.7. Section 8.8 continues the discussion of aggregation to introduce some more
advanced features of the GROUP BY clause, such as CUBE and ROLLUP. Section 8.9 introduces the concept of
partitioned outer joins. Section 8.10 finishes with the three set operators of the SQL language: UNION,
MINUS, and INTERSECT.

8.1 Tuple Variables
Until now, we have formulated our SQL statements as follows:

select ename, init, job
from employees
where deptno = 20;

Actually, this statement is rather incomplete. In this chapter, we must be a little more precise,

because the SQL commands are getting slightly more complicated. To be complete and accurate, we
should have written this statement as shown in Listing 8.1.

195

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-1. Using Tuple Variables in a Query

select e.ename, e.init, e.job
from employees e
where e.deptno = 20;

In this example, e is a tuple variable. Tuple is just a “dignified” term for row, derived from the

relational theory. In Oracle, tuple variables are referred to as table aliases (which is actually rather
confusing), and the ANSI/ISO standard talks about correlation names.

Note the syntax in Listing 8-1: You “declare” the tuple variable in the FROM clause, immediately
following the table name, separated by white space only.

A tuple variable always ranges over a table, or a table expression. In other words, in the example in
Listing 8-1, e is a variable representing one row from the EMPLOYEES table at any time. Within the context
of a specific row, you can refer to specific column (or attribute) values, as shown in the SELECT and WHERE
clauses of the example in Listing 8-1. The tuple variable precedes the column name, separated by a
period. Figure 8-1 shows the column reference e.JOB and its value ADMIN for employee 7900.

Figure 8-1. The EMPLOYEES table with a tuple variable

Do you remember those old-fashioned calendars with one page per month, with a transparent strip
that could move up and down to select a certain week, and a little window that could move on that strip
from the left to the right to select a specific day of the month? If not, Figure 8-2 shows an example of
such a calendar. The transparent strip would be the tuple variable in that metaphor.

Using the concept of tuple variables, we can describe the execution of the SQL command in Listing
8-1 as follows:

1. The tuple variable e ranges (row by row) over the EEMPLOYEES table (the row
order is irrelevant).

196

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

2. Each row e is checked against the WHERE clause, and it is passed to an
intermediate result set if the WHERE clause evaluates to TRUE.

3. For each row in the intermediate result set, the expressions in the SELECT
clause are evaluated to produce the final query result.

Figure 8-2. Calendar with sliding day indicator window

As long as you are writing simple queries (as we have done so far in this book), you don’t need to
worry about tuple variables. The Oracle DBMS understands your SQL intentions anyway. However, as
soon as your SQL statements become more complicated, it might be wise (or even mandatory) to start
using tuple variables. Tuple variables always have at least one advantage: they enhance the readability
and maintainability of your SQL code.

8.2 Joins
You can specify multiple tables in the FROM component of a query. We start this section with an intended
mistake, to evoke an Oracle error message. See what happens in Listing 8-2 where our intention is to
discover which employees belong to which departments.

Listing 8-2. Ambiguously Defined Columns

select deptno, location, ename, init
from employees, departments;

select deptno, location, ename, init
 *
ERROR at line 1:
ORA-00918: column ambiguously defined

197

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

The message, including the asterisk (*), reveals the problem here. The Oracle DBMS cannot figure

out which DEPTNO column we are referring to. Both tables mentioned in the FROM clause have a DEPTNO
column, and that’s why we get an error message.

Cartesian Products
See Listing 8-3 for a second attempt to find which employees belong to which departments. Because we
fixed the ambiguity issue, we get query results, but these results don’t meet our expectations. The tuple
variables e and d range freely over both tables, because there is no constraining WHERE clause; therefore,
the query result we get is the Cartesian product of both tables, resulting in 56 rows. We have 14
employees and 4 departments, and 14 times 4 results in 56 possible combinations.

Listing 8-3. The Cartesian Product of Two Tables

select d.deptno, d.location, e.ename, e.init
from employees e, departments d;

 DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----
 10 NEW YORK SMITH N
 10 NEW YORK ALLEN JAM
 10 NEW YORK WARD TF
 10 NEW YORK JONES JM
 10 NEW YORK MARTIN P
 10 NEW YORK BLAKE R
 10 NEW YORK CLARK AB
 10 NEW YORK SCOTT SCJ
...
 40 BOSTON ADAMS AA
 40 BOSTON JONES R
 40 BOSTON FORD MG
 40 BOSTON MILLER TJA

Equijoins
The results in Listing 8-3 reveal the remaining problem: the query lacks a WHERE clause. In Listing 8-4, we
fix the problem by adding a WHERE clause, and we also add an ORDER BY clause to get the results ordered
by department, and within each department, by employee name.

Listing 8-4. Joining Two Tables

select d.deptno, d.location, e.ename, e.init
from employees e, departments d
where e.deptno = d.deptno
order by d.deptno, e.ename;

198

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

 DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----
 10 NEW YORK CLARK AB
 10 NEW YORK KING CC
 10 NEW YORK MILLER TJA
 20 DALLAS ADAMS AA
 20 DALLAS FORD MG
 20 DALLAS JONES JM
 20 DALLAS SCOTT SCJ
 20 DALLAS SMITH N
 30 CHICAGO ALLEN JAM
 30 CHICAGO BLAKE R
 30 CHICAGO JONES R
 30 CHICAGO MARTIN P
 30 CHICAGO TURNER JJ
 30 CHICAGO WARD TF

Listing 8-4 shows a join or, to be more precise, an equijoin. This is the most common join type in

SQL.

SQL Layout Conventions

Your SQL statements should be correct in the first place, of course. As soon as SQL statements get longer
and more complicated, it becomes more and more important to adopt a certain layout style. Additional
white space (spaces, tabs, and new lines) has no meaning in the SQL language, but it certainly enhances
code readability and maintainability. You could have spread the query in Listing 8-4 over multiple lines, as
follows:

select d.deptno
, d.location
, e.ename
, e.init
from employees e
, departments d
where e.deptno = d.deptno
order by d.deptno
, e.ename;

This SQL layout convention has proved itself to be very useful in practice. Note the placement of the
commas at the beginning of the next line as opposed to the end of the current line. This makes adding and
removing lines easier, resulting in fewer unintended errors. Any other standard is fine, too. This is mostly a
matter of taste. Just make sure to adopt a style and use it consistently.

Non-equijoins
If you use a comparison operator other than an equal sign in the WHERE clause in a join, it is called a non-
equijoin or thetajoin. For an example of a thetajoin, see Listing 8-5, which calculates the total annual
salary for each employee.

199

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-5. Thetajoin Example

select e.ename employee
, 12*e.msal+s.bonus total_salary
from employees e
, salgrades s
where e.msal between s.lowerlimit
 and s.upperlimit;

EMPLOYEE TOTAL_SALARY
-------- ------------
SMITH 9600
JONES 9600
ADAMS 13200
WARD 15050
MARTIN 15050
MILLER 15650
TURNER 18100
ALLEN 19300
CLARK 29600
BLAKE 34400
JONES 35900
SCOTT 36200
FORD 36200
KING 60500

By the way, you can choose any name you like for your tuple variables. Listing 8-5 uses e and s, but

any other names would work, including longer names consisting of any combination of letters and
digits. Enhanced readability is the only reason why this book uses (as much as possible) the first
characters of table names as tuple variables in SQL statements.

Joins of Three or More Tables
Let’s try to enhance the query of Listing 8-5. In a third column, we also want to see the name of the
department that the employee works for. Department names are stored in the DEPARTMENTS table, so we
add three more lines to the query, as shown in Listing 8-6.

Listing 8-6. Joining Three Tables

select e.ename employee
, 12*e.msal+s.bonus total_salary
, d.dname department
from employees e
, salgrades s
, departments d
where e.msal between s.lowerlimit
 and s.upperlimit
and e.deptno = d.deptno;

200

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

EMPLOYEE TOTAL_SALARY DEPARTMENT
-------- ------------ ----------
SMITH 9600 TRAINING
JONES 9600 SALES
ADAMS 13200 TRAINING
WARD 15050 SALES
MARTIN 15050 SALES
MILLER 15650 ACCOUNTING
TURNER 18100 SALES
ALLEN 19300 SALES
CLARK 29600 ACCOUNTING
BLAKE 34400 SALES
JONES 35900 TRAINING
SCOTT 36200 TRAINING
FORD 36200 TRAINING
KING 60500 ACCOUNTING

The main principle is simple. We now have three free tuple variables (e, s, and d) ranging over three

tables. Therefore, we need (at least) two conditions in the WHERE clause to get the correct row
combinations in the query result.

For the sake of completeness, you should note that the SQL language supports table names as
default tuple variables, without the need to declare them explicitly in the FROM clause. Look at the
following example:

select employees.ename, departments.location
from employees, departments
where employees.deptno = departments.deptno;

This SQL statement is syntactically correct. However, we will avoid using this SQL “feature” in this

book. It is rather confusing to refer to a table in one place and to refer to a specific row from a table in
another place with the same name, without making a clear distinction between row and table
references. Moreover, the names of the tables used in this book are long enough to justify declaring
explicit tuple variables in the FROM clause and using them everywhere else in the SQL statement, thus
reducing the number of keystrokes.

Self-Joins
In SQL, you can also join a table to itself. Although this join type is essentially the same as a regular join,
it has its own name: autojoin or self-join. In other words, autojoins contain tables being referenced more
than once in the FROM clause. This provides another good reason why you should use explicit tuple
variables (as opposed to relying on table names as implicit tuple variables) in your SQL statements. In
autojoins, the table names result in ambiguity issues. So why not use tuple variables consistently in all
your SQL statements?

Listing 8-7 shows an example of an autojoin. The query produces an overview of all employees born
after January 1, 1965, with a second column showing the name of their managers. (You may want to refer
to Figure C-3 in Appendix C, which shows a diagram of the hierarchy of the EMPLOYEES table.)

201

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-7. Autojoin (Self-Join) Example

select e.ename as employee
, m.ename as manager
from employees m
, employees e
where e.mgr = m.empno
and e.bdate > date '1965-01-01';

EMPLOYEE MANAGER
-------- --------
TURNER BLAKE
JONES BLAKE
ADAMS SCOTT
JONES KING
CLARK KING
SMITH FORD

Because we have two tuple variables e and m, both ranging freely over the same table, we get 14 � 14

= 196 possible row combinations. The WHERE clause filters out the correct combinations, where row m
reflects the manager of row e.

8.3 The JOIN Clause
The join examples shown in the previous section use the Cartesian product operator (the comma in the
FROM clause) as a starting point, and then filter the rows using an appropriate WHERE clause. There’s
absolutely nothing wrong with that approach, and the syntax is fully compliant with the ANSI/ISO SQL
standard, but the ANSI/ISO SQL standard also supports alternative syntax to specify joins. This
alternative join syntax is covered in this section.

First, let’s look again at the join statement in Listing 8-7. You could argue that the WHERE clause of
that query contains two different condition types: line 5 contains the join condition to make sure you
combine the right rows, and line 6 is a “real” (non-join) condition to filter the employees based on their
birth dates.

Listing 8-8 shows an equivalent query, producing the same results, using a different join syntax.
Note the keywords JOIN and ON. Also note that this join syntax doesn’t use any commas in the FROM
clause.

Listing 8-8. JOIN ... ON Example

select e.ename as employee
, m.ename as manager
from employees m
 JOIN
 employees e
 ON e.mgr = m.empno
where e.bdate > date '1965-01-01'
order by employee;

202

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

EMPLOYEE MANAGER
-------- --------
ADAMS SCOTT
CLARK KING
JONES BLAKE
JONES KING
SMITH FORD
TURNER BLAKE

The syntax of Listing 8-8 is more elegant than the syntax in Listing 8-7, because the join is fully

specified in the FROM clause and the WHERE clause contains only the filtering (i.e., the non-join) condition.

Natural Joins
You can also use the NATURAL JOIN operator in the FROM clause. Listing 8-9 shows an example that joins
the EMPLOYEES table with the HISTORY table.

Question: Before reading on, how is it possible that Listing 8-9 produces 15 rows in the result,
instead of 14?

Listing 8-9. Natural Join Example

select ename, beginyear, msal, deptno
from employees
 natural join
 history;

ENAME BEGINYEAR MSAL DEPTNO
-------- --------- -------- --------
SMITH 2000 800 20
ALLEN 1999 1600 30
WARD 1992 1250 30
WARD 2000 1250 30
JONES 1999 2975 20
MARTIN 1999 1250 30
BLAKE 1989 2850 30
CLARK 1988 2450 10
SCOTT 2000 3000 20
KING 2000 5000 10
TURNER 2000 1500 30
ADAMS 2000 1100 20
JONES 2000 800 30
FORD 2000 3000 20
MILLER 2000 1300 10

Explanation: To understand what’s happening in Listing 8-9, you must know how the NATURAL JOIN

operator is defined in the SQL language. Listing 8-9 illustrates the behavior of the NATURAL JOIN operator:

1. The NATURAL JOIN operator determines which columns the two tables
(EMPLOYEES and HISTORY) have in common. In this case, these are the three
columns EMPNO, MSAL, and DEPTNO.

203

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

2. It joins the two tables (using an equijoin) over all columns they have in
common.

3. It suppresses the duplicate columns resulting from the join operation in the
previous step. This is why you don’t get an error message about MSAL and
DEPTNO in the SELECT clause being ambiguously defined.

4. Finally, the NATURAL JOIN operator evaluates the remaining query clauses. In
Listing 8-9, the only remaining clause is the SELECT clause. The final result
shows the desired four columns.

Apparently, every employee occurs only once in the result, except WARD. This means that this
employee has been employed by the same department (30) for the same salary (1250) during two
distinct periods of his career. This is a pure coincidence. If the query had returned 14 rows instead of 15,
we would probably not have been triggered to investigate the query for correctness. Remember that
some wrong queries may give “correct” results by accident.

This example shows that you should be very careful when using the NATURAL JOIN operator.
Probably the biggest danger is that a natural join may “suddenly” start producing strange and
undesirable results if you add new columns to your tables, or you rename existing columns, thus
accidentally creating matching column names.

� Caution Natural joins are safe only if you practice a very strict column-naming standard in your database
designs.

Equijoins on Columns with the Same Name
SQL offers an alternative way to specify equijoins, allowing you to explicitly specify the columns you
want to participate in the equijoin operation. As you saw in Listing 8-8, you can use the ON clause
followed by fully specified join predicates. You can also use the USING clause, specifying column names
instead of full predicates. See Listing 8-10 for an example.

Listing 8-10. JOIN ... USING Example

select e.ename, e.bdate
, h.deptno, h.msal
from employees e
 join
 history h
 using (empno)
where e.job = 'ADMIN';

ENAME BDATE DEPTNO MSAL
-------- ----------- -------- --------
JONES 03-DEC-1969 30 800
MILLER 23-JAN-1962 10 1275
MILLER 23-JAN-1962 10 1280
MILLER 23-JAN-1962 10 1290
MILLER 23-JAN-1962 10 1300

204

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Note that you need tuple variables again, because you join over only the EMPNO column; the columns
h.DEPTNO and e.DEPTNO are now different.

Figure 8-3 shows the syntax diagram of the ANSI/ISO join syntax, including the NATURAL JOIN
operator, the ON clause, and the USING clause.

Figure 8-3. ANSI/ISO join syntax diagram

Note that you can also use a CCROSS JOIN syntax. The result is identical to the effect of the comma
operator in the FROM clause: the Cartesian product.

The examples in the remainder of this book will show a mixture of “old-fashioned” joins (as
introduced in Section 8.2) and the alternative ANSI/ISO SQL join syntax explained in this section.

8.4 Outer Joins
Earlier in the chapter, in Listing 8-4, we executed a regular join (an equijoin) similar to the one shown in
Listing 8-11.

Listing 8-11. Regular Join

select d.deptno, d.location
, e.ename, e.init
from employees e, departments d
where e.deptno = d.deptno
order by d.deptno, e.ename;

 DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----
 10 NEW YORK CLARK AB
 10 NEW YORK KING CC
 10 NEW YORK MILLER TJA
 20 DALLAS ADAMS AA
 20 DALLAS FORD MG
 20 DALLAS JONES JM
 20 DALLAS SCOTT SCJ
 20 DALLAS SMITH N
 30 CHICAGO ALLEN JAM

205

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

 30 CHICAGO BLAKE R
 30 CHICAGO JONES R
 30 CHICAGO MARTIN P
 30 CHICAGO TURNER JJ
 30 CHICAGO WARD TF

The result in Listing 8-11 shows no rows for department 40, for an obvious reason: that department

does exist in the DEPARTMENTS table, but it has no corresponding employees. In other words, if tuple
variable d refers to department 40, there is not a single row e in the EMPLOYEES table to make the WHERE
clause evaluate to TRUE.

If you want the fact that department 40 exists to be reflected in your join results, you can make that
happen with an outer join. For outer joins in Oracle, you can choose between two syntax options:

� The “old” outer join syntax, supported by Oracle since many releases, and
implemented many years before the ANSI/ISO standard defined a more elegant
outer join syntax

� The ANSI/ISO standard outer join syntax

We will discuss an example of both outer join syntax variants, based on the regular join in Listing 8-11.

Old Oracle-Specific Outer Join Syntax
First, change the fourth line of the command in Listing 8-11 and add a plus sign between parentheses, as
shown in Listing 8-12.

Listing 8-12. The (+) Outer Join Syntax

select d.deptno, d.location
, e.ename, e.init
from employees e, departments d
where e.deptno(+) = d.deptno
order by d.deptno, e.ename;

 DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----
 10 NEW YORK CLARK AB
 10 NEW YORK KING CC
 10 NEW YORK MILLER TJA
 20 DALLAS ADAMS AA
 20 DALLAS FORD MG
 20 DALLAS JONES JM
 20 DALLAS SCOTT SCJ
 20 DALLAS SMITH N
 30 CHICAGO ALLEN JAM
 30 CHICAGO BLAKE R
 30 CHICAGO JONES R
 30 CHICAGO MARTIN P
 30 CHICAGO TURNER JJ
 30 CHICAGO WARD TF
 40 BOSTON

206

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

As you can see, department 40 now also appears in the result. The effect of the addition (+) in the
WHERE clause has combined department 40 with two null values for the employee data. The main
disadvantage of this outer join syntax is that you must make sure to add the (+) operator in the right
places in your SQL command. Failing to do so normally results in disabling the outer join effect. Another
disadvantage of this outer join syntax is its lack of readability.

New Outer Join Syntax
The new ANSI/ISO outer join syntax is much more elegant and readable. Listing 8-13 shows the version
to get the same results as in Listing 8-12.

Listing 8-13. ANSI/ISO Outer Join Example

select deptno, d.location
, e.ename, e.init
from employees e
 right outer join
 departments d
 using (deptno)
order by deptno, e.ename;

 DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----
 10 NEW YORK CLARK AB
 10 NEW YORK KING CC
 10 NEW YORK MILLER TJA
 20 DALLAS ADAMS AA
 20 DALLAS FORD MG
 20 DALLAS JONES JM
 20 DALLAS SCOTT SCJ
 20 DALLAS SMITH N
 30 CHICAGO ALLEN JAM
 30 CHICAGO BLAKE R
 30 CHICAGO JONES R
 30 CHICAGO MARTIN P
 30 CHICAGO TURNER JJ
 30 CHICAGO WARD TF
 40 BOSTON

In Listing 8-13 we used a RIGHT OUTER JOIN, because we suspect the presence of rows at the right-

hand side (the DEPARTMENTS table) without corresponding rows at the left-hand side (the EMPLOYEES table).
If you switched the two table names in the FROM clause, you would need the LEFT OUTER JOINoperator.
Oracle also supports the FULL OUTER JOIN syntax, where both tables participating in the join operation
handle rows without corresponding rows on the other side in a special way. Figure 8-4 shows all three
outer join syntax possibilities.

The outer join operator is especially useful if you want to aggregate (summarize) data; for example,
when you want to produce a course overview showing the number of attendees for each scheduled
course. In such an overview, you obviously also want to see all scheduled courses for which no
registrations are entered yet, so you might consider cancelling or postponing those courses. This type of
query (with aggregation) is the topic of Section 8.5.

207

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Figure 8-4. ANSI/ISO outer join syntax diagram

Outer Joins and Performance
Although outer joins obviously imply some additional processing for the DBMS, there is no reason to
avoid outer joins for performance reasons. The Oracle optimizer knows how to handle outer joins
efficiently. Moreover, given a certain data model, you sometimes need outer joins. Don’t try to invent
your own workarounds in such cases, and don’t believe unfounded statements like “outer joins are bad.”

In Section 8.9, we will revisit outer joins to discuss partitioned outer joins.

8.5 The GROUP BY Component
Until now, we have considered queries showing information about only individual rows. Each row in our
query results so far had a one-to-one correspondence with some row in the database. However, in real
life, you often want to produce aggregated information from a database, where the rows in the query
results represent information about a set of database rows. For example, you might want to produce an
overview showing the number of employees (the head count) per department. For this type of query,
you need the GGROUP BY clause of the SELECT command, as shown in Listing 8-14.

Listing 8-14. The GROUP BY Clause

select e.deptno as "department"
, count(e.empno) as "number of employees"
from employees e
group by e.deptno;

department number of employees
---------- -------------------
 10 3
 20 5
 30 6

Listing 8-14 shows the COUNT function at work, to count the number of employees per department.

COUNT is an example of a group function, and we’ll look at it and the other group functions in Section 8.6.

208

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

The result of this query is a table, of course—just like any result of a query. However, there is no one-
to-one mapping anymore between the rows of the EMPLOYEES table and the three rows of the result.
Instead, you aggregate employee data per department.

To explain how the GROUP BY operator works, and how the SQL language handles aggregation,
Listing 8-15 shows an imaginary representation of an intermediate result. Listing 8-15 shows a pseudo-
table, with three rows and six columns. For readability, some columns of the EMPLOYEES table are
omitted. In the last column, you see the three different department numbers, and the other five columns
show sets of attribute values. These sets are represented by enumerating their elements in a comma-
separated list between braces. Some of these sets contain null values only, such as e.COMM for
departments 10 and 20.

� Note The representation in Listing 8-15 is purely fictitious and only serves educational purposes. Data
structures as shown in Listing 8-15 do not occur in reality.

Listing 8-15. The Effect of GROUP BY e.DEPTNO

e.EMPNO e.JOB e.MGR e.MSAL e.COMM e.DEPTNO
======= ============ ====== ====== ====== ========
{7782 {'MANAGER' {7839 {2450 {NULL 10
,7839 ,'DIRECTOR' ,NULL ,5000 ,NULL
,7934} ,'ADMIN' } ,7782} ,1300} ,NULL}

{7369 {'TRAINER' {7902 { 800 {NULL 20
,7566 ,'MANAGER' ,7839 ,2975 ,NULL
,7788 ,'TRAINER' ,7566 ,3000 ,NULL
,7876 ,'TRAINER' ,7788 ,1100 ,NULL
,7902} ,'TRAINER'} ,7566} ,3000} ,NULL}

{7499 {'SALESREP' {7698 {1600 { 300 30
,7521 ,'SALESREP' ,7698 ,1250 , 500
,7654 ,'SALESREP' ,7698 ,1250 ,1400
,7698 ,'MANAGER' ,7839 ,2850 ,NULL
,7844 ,'SALESREP' ,7698 ,1500 , 0
,7900} ,'ADMIN' } ,7698} , 800} ,NULL}

Going back to Listing 8-14, it now becomes clear what the COUNT(e.EMPNO) function does: it returns

the number of elements of each e.EMPNO set.
You could argue that (as an effect of the GROUP BY e.DEPTNO clause) the last column in Listing 8-15

(e.DEPTNO) contains “regular” values, and the other five columns become “set-valued” attributes. You
can use only e.DEPTNO in the SELECT clause. If you want to see data from the other columns in your query
result, you must use group functions (such as COUNT) to aggregate those sets into a single value. See the
next section for a discussion of group functions.

209

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

� Note To be more precise, we should refer to multisets instead of sets in this context. Duplicate values are
maintained, as you can see in Listing 8-15. We will discuss multisets in Chapter 12.

Multiple-Column Grouping
You can also group on multiple-column expressions, separated by commas. For example, the query in
Listing 8-16 produces an overview of the number of registrations per course.

Listing 8-16. Grouping on Two Columns

select r.course, r.begindate
, count(r.attendee) as attendees
from registrations r
group by r.course, r.begindate;

COURSE BEGINDATE ATTENDEES
------ ----------- ---------
JAV 13-DEC-1999 5
JAV 01-FEB-2000 3
OAU 10-AUG-1999 3
OAU 27-SEP-2000 1
PLS 11-SEP-2000 3
SQL 12-APR-1999 4
SQL 04-OCT-1999 3
SQL 13-DEC-1999 2
XML 03-FEB-2000 2

This result shows one row for each different (COURSE, BEGINDATE) combination found in the

REGISTRATIONS table.

� Note As you can see, the rows in Listing 8-16 are ordered on the columns of the GROUP BY clause. However, if
you want a certain ordering of your query results, you should never rely on implicit DBMS behavior and always
specify an ORDER BY clause.

GROUP BY and Null Values
If a column expression on which you apply the GROUP BY clause contains null values, these null values
end up together in a separate group. See Listing 8-17 for an example.

210

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-17. GROUP BY and Null Values

select e.comm, count(e.empno)
from employees e
group by e.comm;

 COMM COUNT(E.EMPNO)
-------- --------------
 0 1
 300 1
 500 1
 1400 1
 10

Apparently, we have ten employees without commission.

8.6 Group Functions
In the previous section, we used the COUNT function to count the number of employees per department
and the number of registrations per course. COUNT is an example of a group function. All group functions
have two important properties in common:

� They can be applied only to sets of values.

� They return a single aggregated value, derived from that set of values.

That’s why group functions often occur in combination with GROUP BY (and optionally the HAVING
clause, covered in Section 8.7) in SQL commands. The most important Oracle group functions are listed
in Table 8-1.

Table 8-1. Common Oracle Group Functions

Function Description Applicable To

COUNT() Number of values All datatypes

SUM() Sum of all values Numeric data

MIN() Minimum value All datatypes

MAX() Maximum value All datatypes

AVG() Average value Numeric data

MEDIAN() Median (middle value) Numeric or date (time) data

STATS_MODE() Modus (most frequent value) All datatypes

211

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

STDDEV() Standard deviation Numeric data

VARIANCE() Statistical variance Numeric data

The last column in Table 8-1 shows the applicable datatypes for all group functions. The functions

MIN and MAX are applicable to any datatype, including dates and alphanumeric strings. MIN and MAX need
only an ordering (sorting) criterion for the set of values. Note also that you can apply the AVG function
only to numbers, because the average is defined as the SUM divided by the COUNT, and the SUM function
accepts only numeric data.

Let’s look at some group function examples in Listing 8-18.

Listing 8-18. Some Examples of Group Functions

select e.deptno
, count(e.job)
, sum(e.comm)
, avg(e.msal)
, median(e.msal)
from employees e
group by e.deptno;

 DEPTNO COUNT(E.JOB) SUM(E.COMM) AVG(E.MSAL) MEDIAN(E.MSAL)
-------- ------------ ----------- ----------- --------------
 10 3 2916.667 2450
 20 5 2175 2975
 30 6 2200 1541.667 1375

Group Functions and Duplicate Values
If you apply a group function to a set of column values, that set of values may contain duplicate values.
By default, these duplicate values are all treated as individual values, contributing to the end result of all
group functions applied to the set of values. For example, we have five employees in department 20, but
we have only two different jobs in that department. Nevertheless, Listing 8-18 shows 5 as the result of
COUNT(e.JOB) for department 20.

If you want SQL group functions to ignore duplicate values (except one, of course), you must specify
the keyword DISTINCT immediately after the first parenthesis. Although it is syntactically correct, the
addition of DISTINCT is meaningless for the MIN and MAX functions. Look at Listing 8-19 for some
examples.

Listing 8-19. Using the DISTINCT Option for Group Functions

select count(deptno), count(distinct deptno)
, avg(comm), avg(coalesce(comm,0))
from employees;

212

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

COUNT(DEPTNO) COUNT(DISTINCTDEPTNO) AVG(COMM) AVG(COALESCE(COMM,0))
------------- --------------------- --------- ---------------------
 14 3 550 157.1429

Note that Listing 8-19 also shows that you can use group functions in the SELECT clause of a query

without a GROUP BY clause. The absence of a GROUP BY clause in combination with the presence of group
functions in the SELECT clause always results in a single-row result. In other words, the full table is
aggregated into a single row. You can achieve precisely the same result by grouping on a constant
expression. Try this yourself; for example, see what happens if you add GROUP BY 'x' to the query in
Listing 8-19.

Group Functions and Null Values
The ANSI/ISO SQL standard postulates group functions to ignore null values completely. There is only
one exception to this rule: the COUNT(*) function. This special case is discussed later in this section. This
is a reasonable compromise. The only other consistent behavior for group functions would be to return a
null value as soon as the input contains a null value. This would imply that all your SQL statements
(containing group functions) should contain additional code to handle null values explicitly. So,
ignoring null values completely is not a bad idea. Just make sure that you understand the consequences
of this behavior. See Table 8-2 for some typical examples.

Table 8-2. Behavior of Group Functions and Null Values

Set X SUM(X) MIN(X) AVG(X) MAX(X)

{1,2,3,NULL} 6 1 2 3

{1,2,3,0} 6 0 1.5 3

{1,2,3,2} 8 1 2 3

The SUM function does not make any distinction between {1,2,3,NULL} and {1,2,3,0}. The MIN and

AVG functions don’t make any distinction between {1,2,3,NULL} and {1,2,3,2}. The MAX function gives
the same result on all three sets.

Looking back at Listing 8-19, you see an example of function nesting: the AVG function operates on
the result of the COALESCE function. This is a typical method to handle null values explicitly. As you can
see from Listing 8-19, the results of AVG(COMM) and AVG(COALESCE(COMM,0)) are obviously different. In this
case, the Oracle DBMS replaces all null values by zeros before applying the AVG function, because the
null values in the COMM column actually mean “not applicable.”

The next query, shown in Listing 8-20, tells us how many different courses are scheduled for each
trainer and the total number of scheduled courses.

Listing 8-20. GROUP BY and DISTINCT

select trainer
, count(distinct course)
, count(*)

213

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

from offerings
group by trainer;

 TRAINER COUNT(DISTINCTCOURSE) COUNT(*)
-------- --------------------- --------
 7369 2 3
 7566 2 2
 7788 2 2
 7876 1 1
 7902 2 2
 3 3

Apparently, we have three course offerings without a trainer being assigned.

Grouping the Results of a Join
The query in Listing 8-21 shows the average evaluation ratings for each trainer, over all courses
delivered.

Listing 8-21. GROUP BY on a Join

select o.trainer, avg(r.evaluation)
from offerings o
 join
 registrations r
 using (course,begindate)
group by o.trainer;

 TRAINER AVG(R.EVALUATION)
-------- -----------------
 7369 4
 7566 4.25
 7788
 7876 4
 7902 4

Notice the USING clause in line 5, with the COURSE and BEGINDATE columns. This USING clause with two

columns is needed to get the correct join results.

The COUNT(*) Function
As mentioned earlier, group functions operate on a set of values, with one important exception. Besides
column names, you can specify the asterisk (*) as an argument to the COUNT function. This widens the
scope of the COUNT function from a specific column to the full row level. COUNT(*) returns the number of
rows in the entire group.

214

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

� Note If you think that SELECT COUNT(1) is faster than SELECT COUNT(*), try a little experiment and prepare to
be surprised—you will find out that there is no difference. Don’t trust opinions...

Listing 8-20 already showed an example of using the COUNT(*) function, to get the total number of
scheduled courses for each trainer from the OFFERINGS table. Listing 8-22 shows another example of
using the COUNT(*) function, this time applied against the EMPLOYEES table.

Listing 8-22. Count Employees Per Department (First Attempt)

select e.deptno, count(*)
from employees e
group by e.deptno;

 DEPTNO COUNT(*)
-------- --------
 10 3
 20 5
 30 6

Obviously, department 40 is missing in this result. If you want to change the query into an outer join

in order to show department 40 as well, you must be careful. What’s wrong with the query in Listing 8-
23? Apparently, we suddenly have one employee working for department 40.

Listing 8-23. Count Employees Per Department (Second Attempt)

select deptno, count(*)
from employees e
 right outer join
 departments d
 using (deptno)
group by deptno;

 DEPTNO COUNT(*)
-------- --------
 10 3
 20 5
 30 6
 40 1

Compare the results in Listing 8-23 with the results in Listing 8-24. The only difference is the

argument of the COUNT function. Listing 8-24 obviously shows the correct result, because department 40
has no employees. By counting over the primary key e.EMPNO, you are sure that all “real” employees are
counted, while the null value introduced by the outer join is correctly ignored. You could have used any
other NOT NULL column as well.

215

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-24. Count Employees Per Department (Third Attempt)

select deptno, count(e.empno)
from employees e
 right outer join
 departments d
 using (deptno)
group by deptno;

 DEPTNO COUNT(E.EMPNO)
-------- --------------
 10 3
 20 5
 30 6
 40 0

At the end of Chapter 5, you saw an example of a PL/SQL stored function to count all employees per

department (Section 5.8, Listing 5-31). In that chapter, I mentioned that this counting problem is not
trivial to solve in standard SQL. In Listings 8-22, 8-23, and 8-24, you see that you should indeed be
careful. You need an outer join, and you should make sure to specify the correct argument for the COUNT
function to get correct results.

� Caution You should be careful with the COUNT function, especially if null values might cause problems (since
group functions ignore them) and you want to count row occurrences.

Valid SELECT and GROUP BY Clause Combinations
If your queries contain a GROUP BY clause, some syntax combinations are invalid and result in Oracle
error messages, such as the following:

ORA-00937: not a single-group group function.

This always means that there is a mismatch between your SELECT clause and your GROUP BY clause.
To demonstrate valid versus invalid syntax, Table 8-3 shows one invalid and three valid syntax

examples. Table 8-3 assumes you have a table T with four columns A, B, C, and D.

216

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Table 8-3. Valid and Invalid GROUP BY Syntax Examples

Syntax Valid?

select a, b, max(c) from t ... group by a No

select a, b, max(c) from t ... group by a,b Yes

select a, count(b), min(c) from t ... group by a Yes

select count(c) from t ... group by a Yes

The examples in Table 8-3 illustrate the following two general rules:

� You do not need to select the column expression you group on (see the last
example).

� Any column expression that is not part of the GROUP BY clause can occur only in the
SELECT clause as an argument to a group function. That’s why the first example is
invalid.

By the way, all GROUP BY examples so far showed only column names, but you can also group on
column expressions, such as in the example shown in Listing 8-25.

Listing 8-25. Grouping on Column Expressions

select case mod(empno,2)
 when 0 then 'EVEN '
 else 'ODD '
 end as empno
 sum(msal)
from employees
group by mod(empno,2);

EMPNO SUM(MSAL)
----- ---------
EVEN 20225
ODD 8650

This query shows the salary sums for employees with even and odd employee numbers.

8.7 The HAVING Clause
If you aggregate rows into groups with GROUP BY, you might also want to filter your query result further
by allowing only certain groups into the final query result. You can achieve this with the HAVING clause.
Normally, you use the HAVING clause only following a GROUP BY clause. For example, Listing 8-26 shows
information about departments with more than four employees.

217

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-26. HAVING Clause Example

select deptno, count(empno)
from employees
group by deptno
having count(*) >= 4;

 DEPTNO COUNT(EMPNO)
-------- ------------
 20 5
 30 6

However, the SQL language allows you to write queries with a HAVING clause without a preceding

GROUP BY clause. In that case, Oracle assumes an implicit GROUP BY on a constant expression, just as when
you use group functions in the SELECT clause without specifying a GROUP BY clause; that is, the full table is
treated as a single group.

The Difference Between WHERE and HAVING
It is important to distinguish the WHERE clause from the HAVING clause. To illustrate this difference, Listing
8-27 shows a WHERE clause added to the previous query.

Listing 8-27. HAVING vs. WHERE

select deptno, count(empno)
from employees
where bdate > date '1960-01-01'
group by deptno
having count(*) >= 4;

 DEPTNO COUNT(EMPNO)
-------- ------------
 30 5

The WHERE condition regarding the day of birth (line 3) can be checked against individual rows of the

EMPLOYEES table. On the other hand, the COUNT(*) condition (line 5) makes sense only at the group level.
That’s why group functions should never occur in a WHERE clause. They typically result in the following
Oracle error message:

ORA-00934: group function is not allowed here.

You’ll see this error message in Listing 8-29, caused by a classic SQL mistake, as discussed shortly.

HAVING Clauses Without Group Functions
On the other hand, valid HAVING clauses without group functions are very rare, and they should be
rewritten. In Listing 8-28, the second query is much more efficient than the first one.

218

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-28. HAVING Clause Without a Group Function

select deptno, count(*)
from employees
group by deptno
having deptno <= 20;

 DEPTNO COUNT(*)
-------- --------
 10 3
 20 5

select deptno, count(*)
from employees
where deptno <= 20
group by deptno;

 DEPTNO COUNT(*)
-------- --------
 10 3
 20 5

A Classic SQL Mistake
Take a look at the query in Listing 8-29. It looks very logical, doesn’t it? Who earns more than the average
salary?

Listing 8-29. Error Message: Group Function Is Not Allowed Here

select empno
from employees
where msal > avg(msal);
where msal > avg(msal)
 *
ERROR at line 3:
ORA-00934: group function is not allowed here

However, if you think in terms of tuple variables, the problem becomes obvious: the WHERE clause

has only a single row as its context, turning the AVG function into something impossible to derive.
You can solve this problem in many ways. Listings 8-30 and 8-31 show two suggestions.

Listing 8-30. One Way to Find Who Earns More Than the Average Salary

select e.empno
from employees e
where e.msal > (select avg(x.msal)
 from employees x);

219

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

 EMPNO

 7566
 7698
 7782
 7788
 7839
 7902

Listing 8-31. Another Way to Find Who Earns More Than the Average Salary

select e1.empno
from employees e1
, employees e2
group by e1.empno
, e1.msal
having e1.msal > avg(e2.msal);

 MNR

 7566
 7698
 7782
 7788
 7839
 7902

The solution in Listing 8-31 would probably not win an SQL beauty contest, but it is certainly worth

further examination. This solution is based on the Cartesian product of the EMPLOYEES table with itself.
Notice that it doesn’t have a WHERE clause. Notice also that you group on e1.EMPNO and e1.MSAL, which
allows you to refer to this column in the HAVING clause.

Grouping on Additional Columns
You sometimes need this (apparently) superfluous grouping on additional columns. For example,
suppose you want to see the employee number and the employee name, followed by the total number of
course registrations. The query in Listing 8-32, which could be a first attempt to solve this problem,
produces an Oracle error message.

Listing 8-32. Error Message: Not a GROUP BY Expression

select e.empno, e.ename, count(*)
from employees e
 join
 registrations r
 on (e.empno = r.attendee)
group by e.empno;
select e.empno, e.ename, count(*)
 *

220

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

ERROR at line 1:
ORA-00979: not a GROUP BY expression

The pseudo-intermediate result in Listing 8-33 explains what went wrong here, and why you must

also group on e.ENAME.

Listing 8-33. Pseudo-Intermediate GROUP BY Result

GROUP BY e.EMPNO GROUP BY e.EMPNO,e.ENAME

e.EMPNO e.ENAME e.INIT ... e.EMPNO e.ENAME e.INIT ...
======= ========= ====== ======= ======== ======
 7369 {'SMITH'} {'N'} 7369 'SMITH' {'N'}
 7499 {'ALLEN'} {'JAM'} 7499 'ALLEN' {'JAM'}
 7521 {'WARD' } ... 7521
 7566

The two results look similar; however, there is an important difference between sets consisting of a

single element, such as {'SMITH'}, and a literal value, such as 'SMITH'. In mathematics, sets with a single
element are commonly referred to as singleton sets, or just singletons.

Listing 8-34 shows another instructive mistake.

Listing 8-34. Error Message: Not a Single-Group Group Function

select deptno
, sum(msal)
from employees;

select deptno
 *
ERROR at line 1:
ORA-00937: not a single-group group function

In the absence of a GROUP BY clause, the SUM function would return a single row, while DEPTNO would

produce 14 department numbers. Two columns with different row counts cannot be presented side-by-
side in a single result. After the correction in Listing 8-35, the error message disappears, and you get the
desired results.

Listing 8-35. Correction of the Error Message in Listing 8-34

select deptno
, sum(msal)
from employees
group by deptno;

 DEPTNO SUM(MSAL)
-------- -------------
 10 8750
 20 10875
 30 9250

221

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

In summary, if your query contains a GROUP BY clause, the SELECT clause is allowed to contain only
group expressions. A group expression is a column name that is part of the GROUP BY clause, or a group
function applied to any other column expression. See also Table 8-3 at the end of Section 8.6.

8.8 Advanced GROUP BY Features
The previous sections showed examples of using “standard” GROUP BY clauses. You can also use some
more advanced features of the GROUP BY clause. Here, we will look at GROUP BY CUBE and GROUP BY
ROLLUP.

Let’s start with a regular GROUP BY example, shown in Listing 8-36.

Listing 8-36. Regular GROUP BY Example

select deptno, job
, count(empno) headcount
from employees
group by deptno, job;

 DEPTNO JOB HEADCOUNT
-------- ---------- ---------
 10 MANAGER 1
 10 DIRECTOR 1
 10 ADMIN 1
 20 MANAGER 1
 20 TRAINER 4
 30 MANAGER 1
 30 SALESREP 4
 30 ADMIN 1

You get an overview with the number of employees per department, and within each department

per job. To keep things simple, let’s forget about department 40, the department without employees.

GROUP BY ROLLUP
Notice what happens if you change the GROUP BY clause and add the keyword ROLLUP, as shown in Listing
8-37.

Listing 8-37. GROUP BY ROLLUP Example

select deptno, job
, count(empno) headcount
from employees
group by ROLLUP(deptno, job);

 DEPTNO JOB HEADCOUNT
-------- -------- ---------
 10 ADMIN 1
 10 MANAGER 1

222

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

 10 DIRECTOR 1
>>> 10 3 <<<
 20 MANAGER 1
 20 TRAINER 4
>>> 20 5 <<<
 30 ADMIN 1
 30 MANAGER 1
 30 SALESREP 4
>>> 30 6 <<<
>>> 14 <<<

The ROLLUP addition results in four additional rows, marked with >>> and <<< in Listing 8-37 for

readability. Three of these four additional rows show the head count per department over all jobs, and
the last row shows the total number of employees.

GROUP BY CUBE
You can also use the CUBE keyword in the GROUP BY clause. Listing 8-38 shows an example.

Listing 8-38. GROUP BY CUBE Example

select deptno, job
, count(empno) headcount
from employees
group by CUBE(deptno, job);

 DEPTNO JOB HEADCOUNT
-------- -------- ---------
 14
>>> ADMIN 2 <<<
>>> MANAGER 3 <<<
>>> TRAINER 4 <<<
>>> DIRECTOR 1 <<<
>>> SALESREP 4 <<<
 10 3
 10 MANAGER 1
 10 DIRECTOR 1
 10 ADMIN 1
 20 5
 20 MANAGER 1
 20 TRAINER 4
 30 6
 30 MANAGER 1
 30 SALESREP 4
 30 ADMIN 1

This time, you get five more rows in the query result, marked in the same way with >>> and <<<,

showing the number of employees per job, regardless of which department employs them.

223

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

� Tip Both GROUP BY CUBE and GROUP BY ROLLUP are special cases of the GROUP BY GROUPING SETS syntax,
offering more flexibility. You can also merge the results of different grouping operations into a single GROUP BY
clause by specifying them in a comma-separated list. For more details, see Oracle SQL Reference.

CUBE, ROLLUP, and Null Values
The CUBE and ROLLUP keywords generate many null values in query results, as you can see in Listings 8-37
and 8-38. You can distinguish these system-generated null values from other null values; for example, to
replace them with some explanatory text. You can use the GROUPING and GROUPING_ID functions for that
purpose.

The GROUPING Function
Listing 8-39 shows an example \of the GROUPING function.

Listing 8-39. GROUPING Function Example

select deptno
, case GROUPING(job)
 when 0 then job
 when 1 then '**total**'
 end job
, count(empno) headcount
from employees
group by rollup(deptno, job);

 DEPTNO JOB HEADCOUNT
-------- --------- ---------
 10 ADMIN 1
 10 MANAGER 1
 10 DIRECTOR 1
 10 **total** 3
 20 MANAGER 1
 20 TRAINER 4
 20 **total** 5
 30 ADMIN 1
 30 MANAGER 1
 30 SALESREP 4
 30 **total** 6
 total 14

Unfortunately, the GROUPING function can return only two results: 0 or 1. That’s why the last two

lines both show '**total**'.

224

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

The GROUPING_ID Function
The GROUPING_ID function is more flexible that the GROUPING function, because it can return several
different results, as you can see in Listing 8-40.

Listing 8-40. GROUPING_ID Function Example with ROLLUP

select deptno
, case GROUPING_ID(deptno, job)
 when 0 then job
 when 1 then '**dept **'
 when 3 then '**total**'
 end job
, count(empno) headcount
from employees
group by rollup(deptno, job);

 DEPTNO JOB HEADCOUNT
-------- --------- ---------
 10 ADMIN 1
 10 MANAGER 1
 10 DIRECTOR 1
 10 **dept ** 3
 20 MANAGER 1
 20 TRAINER 4
 20 **dept ** 5
 30 ADMIN 1
 30 MANAGER 1
 30 SALESREP 4
 30 **dept ** 6
 total 14

You may be puzzled by the value 3 being used on the fifth line in Listing 8-40. Things become clear

when you convert 3 to a binary representation, which results in the binary number 11. The two ones in
this number act as a flag to trap the situation in which both columns contain a null value. GROUP BY
ROLLUP can produce only 1 (binary 01) and 3 (binary 11), but GROUP BY CUBE can also generate 2 (binary
10). Look at the results in Listing 8-41. Obviously, GROUPING_ID produces a 0 (zero) for all “regular” rows
in the result.

Listing 8-41. GROUPING_ID Function Example with CUBE

select deptno, job
, GROUPING_ID(deptno, job) gid
from employees
group by cube(deptno, job);

 DEPTNO JOB GID
-------- -------- --------
 3
 ADMIN 2

225

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

 MANAGER 2
 TRAINER 2
 DIRECTOR 2
 SALESREP 2
 10 1
 10 ADMIN 0
 10 MANAGER 0
 10 DIRECTOR 0
 20 1
 20 MANAGER 0
 20 TRAINER 0
 30 1
 30 ADMIN 0
 30 MANAGER 0
 30 SALESREP 0

8.9 Partitioned Outer Joins
We discussed outer joins in Section 8.4. This section introduces partitioned outer joins. To explain what
partitioned outer joins are, let’s start with a regular (right) outer join in Listing 8-42.

Listing 8-42. Regular Right Outer Join Example

break on department skip 1 on job

select d.dname as department
, e.job as job
, e.ename as employee
from employees e
 right outer join
 departments d
 using (deptno)
order by department, job;

DEPARTMENT JOB EMPLOYEE
---------- -------- --------
ACCOUNTING ADMIN MILLER
 DIRECTOR KING
 MANAGER CLARK

HR <<<

SALES ADMIN JONES
 MANAGER BLAKE
 SALESREP ALLEN
 WARD
 TURNER
 MARTIN

226

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

TRAINING MANAGER JONES
 TRAINER SMITH
 FORD
 ADAMS
 SCOTT

15 rows selected.

The SQL*Plus BREAK command allows you to enhance the readability of query results. In Listing 8-

42, we use the BREAK command to suppress repeating values in the DEPARTMENT and JOB columns, and to
insert an empty line between the departments. (See Chapter 11 for details about BREAK.) The result shows
15 rows, as expected. We have 14 employees, and the additional row (marked with <<<) is added by the
outer join for the HR department without employees.

Look at Listing 8-43 to see what happens if we add one extra clause, just before the RIGHT OUTER
JOIN operator.

Listing 8-43. Partitioned Outer Join Example

select d.dname as department
, e.job as job
, e.ename as employee
from employees e
 PARTITION BY (JOB)
 right outer join
 departments d
 using (deptno)
order by department, job;

DEPARTMENT JOB EMPLOYEE
---------- -------- --------
ACCOUNTING ADMIN MILLER
 DIRECTOR KING
 MANAGER CLARK
 SALESREP <<<
 TRAINER <<<

HR ADMIN <<<
 DIRECTOR <<<
 MANAGER <<<
 SALESREP <<<
 TRAINER <<<

SALES ADMIN JONES
 DIRECTOR <<<
 MANAGER BLAKE
 SALESREP ALLEN
 WARD
 TURNER
 MARTIN
 TRAINER <<<

227

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

TRAINING ADMIN <<<
 DIRECTOR <<<
 MANAGER JONES
 SALESREP <<<
 TRAINER SMITH
 FORD
 ADAMS
 SCOTT

Listing 8-43 shows at least one row for each combination of a department and a job. Compared with

Listing 8-42, the single row for the HR department is replaced with 12 additional rows, highlighting all
nonexisting department/job combinations. A regular outer join considers full tables when searching for
matching rows in the other table. The partitioned outer join works as follows:

1. Split the driving table in partitions based on a column expression (in Listing 8-
43, this column expression is JOB).

2. Produce separate outer join results for each partition with the other table.

3. Merge the results of the previous step into a single result.

Partitioned outer joins are especially useful when you want to aggregate information over the time
dimension, a typical requirement for data warehouse reporting. See Oracle SQL Reference for more
details and examples.

8.10 Set Operators
You can use the SQL set operators UNION, MINUS, and INTERSECT to combine the results of two
independent query blocks into a single result. As you saw in Chapter 2, the set operators have the syntax
shown in Figure 8-5.

Figure 8-5. Set operators syntax diagram

These SQL operators correspond with the union, minus, and intersect operators you know from
mathematics. Don’t we all have fond memories of our teachers drawing those Venn diagrams on the
whiteboard (or blackboard, for you older readers)? See also Figure 1-1 (in Chapter 1). The meanings of
these set operators in SQL are listed in Table 8-4.

228

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Table 8-4. Set Operators

Operator Result

Q1 UNION Q2 All rows occurring in Q1 or in Q2 (or in both)

Q1 UNION ALL Q2 As UNION, retaining duplicate rows

Q1 MINUS Q2 The rows from Q1, without the rows from Q2

Q1 INTERSECT Q2 The rows occurring in Q1 and in Q2

By default, all three set operators suppress duplicaterows in the query result. The only exception to

this rule is the UNION ALL operator, which does not eliminate duplicate rows. One important advantage of
the UNION ALL operator is that the Oracle DBMS does not need to sort the rows. Sorting is needed for all
other set operators to trace duplicate rows.

The UNION, MINUS, and INTERSECT operators cannot be applied to any arbitrary set of two queries. The
intermediate (separate) results of queries Q1 and Q2 must be “compatible” in order to use them as
arguments to a set operator. In this context, compatibility means the following:

� Q1 and Q2 must select the same number of column expressions.

� The datatypes of those column expressions must match.

Some other rules and guidelines for SQL set operators are the following:

� The result table inherits the column names (or aliases) from Q1.

� Q1 cannot contain an ORDER BY clause.

� If you specify an ORDER BY clause at the end of the query, it doesn’t refer to Q2, but
rather to the total result of the set operator.

Set operators are very convenient when building new queries by combining the multiple query
blocks you wrote (and tested) before, without writing completely new SQL code. This simplifies testing,
because you have more control over correctness.

Listing 8-44 answers the following question: “Which locations host course offerings without having
a department?”

Listing 8-44. MINUS Set Operator Example

select o.location from offerings o
MINUS
select d.location from departments d;

LOCATION

SEATTLE

You can also try to solve this problem without using the MINUS operator. See Listing 8-45 for a

suggestion.

229

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

Listing 8-45. Alternative Solution Without Using the MINUS Operator

select DISTINCT o.location
from offerings o
where o.location not in
 (select d.location
 from departments d)

Note that you must add a DISTINCT operator, to handle situations where you have multiple course

offerings in the same location. As explained before, the MINUS operator automatically removes duplicate
rows.

Are the two queries in Listing 8-44 and 8-45 logically equivalent? They appear to be logically the
same, but they are not quite as identical logically as they first appear. The first query will return two
rows. One is for Seattle. The other is a null, representing the one course offering with an unknown
location. The MINUS operator does not remove the null value, whereas that same null value fails to pass
the WHERE condition in Listing 8-45. This is just one more example of the subtle pitfalls inherent in
dealing with nulls in your data. You can also produce outer join results by using the UNION operator. You
will see how to do this in Listings 8-46 and 8-47.

We start with a regular join in Listing 8-46. In Listing 8-47 you add the additional department(s)
needed for the outer join with a UNION operator, while assigning the right number of employees for those
departments: zero.

Listing 8-46. Regular Join

select d.deptno
, d.dname
, count(e.empno) as headcount
from employees e
, departments d
where e.deptno = d.deptno
group by d.deptno
, d.dname;

 DEPTNO DNAME HEADCOUNT
-------- ---------- ---------
 10 ACCOUNTING 3
 20 TRAINING 5
 30 SALES 6

Listing 8-47. Expansion to an Outer Join with a UNION Operator

select d.deptno
, d.dname
, count(e.empno) as headcount
from employees e
, departments d
where e.deptno = d.deptno
group by d.deptno
, d.dname
union

230

 CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

select x.deptno
, x.dname
, 0 as headcount
from departments x
where x.deptno not in (select y.deptno
 from employees y);

 DEPTNO DNAME HEADCOUNT
-------- ---------- ---------
 10 ACCOUNTING 3
 20 TRAINING 5
 30 SALES 6
 40 HR 0

SQL>

8.11 Exercises
The following exercises will help you to better understand the topics covered in this chapter. The
answers are presented in Appendix D.

1. Produce an overview of all course offerings. Provide the course code, begin
date, course duration, and name of the trainer.

2. Provide an overview, in two columns, showing the names of all employees who
ever attended an SQL course, with the name of the trainer.

3. For all employees, list their name, initials, and yearly salary (including bonus
and commission).

4. For all course offerings, list the course code, begin date, and number of
registrations. Sort your results on the number of registrations, from high to
low.

5. List the course code, begin date, and number of registrations for all course
offerings in 1999 with at least three registrations.

6. Provide the employee numbers of all employees who ever taught a course as a
trainer, but never attended a course as an attendee.

7. Which employees attended a specific course more than once?

8. For all trainers, provide their name and initials, the number of courses they
taught, the total number of students they had in their classes, and the average
evaluation rating. Round the evaluation ratings to one decimal.

9. List the name and initials of all trainers who ever had their own manager as a
student in a general course (category GEN).

10. Did we ever use two classrooms at the same time in the same course location?

231

CHAPTER 8 � RETRIEVAL: MULTIPLE TABLES AND AGGREGATION

232

11. Produce a matrix report (one column per department, one row for each job)
where each cell shows the number of employees for a specific department and
a specific job. In a single SQL statement, it is impossible to dynamically derive
the number of columns needed, so you may assume you have three
departments only: 10, 20, and 30.

12. Listing 8-26 produces information about all departments with more than four
employees. How can you change the query to show information about all
departments with fewer than four employees?

13. Look at Listings 8-44 and 8-45. Are those two queries logically equivalent?
Investigate the two queries and explain the differences, if any.

C H A P T E R 9

� � �

Retrieval: Some Advanced Features

This is the fourth chapter in a series about retrieval features of SQL. It is a logical continuation of
Chapters 4, 5, and 8.

First, we revisit subqueries, beginning with an introduction to the three operators ANY, ALL, and
EXISTS. These operators allow you to create a special relationship between main queries and subqueries,
as opposed to using the IN operator or standard comparison operators. You will also learn about
correlated subqueries, which are subqueries where some subquery clauses refer to column expressions
from the main query.

In Sections 9.2 and 9.3, we will look at subqueries in query components other than the WHERE clause:
the SELECT and the FROM clauses. In Section 9.4 we will discuss the WITH clause, also referred to as
subquery factoring, which allows you to define one or more subqueries in the beginning of your SQL
commands, and then to reference them by name in the remainder of your SQL command.

We continue with hierarchical queries. Relational tables are essentially flat structures, but they can
represent hierarchical data structures; for example, by using foreign key constraints referring to the
primary key of the same table. The MGR column of the EMPLOYEES table is a classic example of such a
hierarchical relationship. Oracle SQL supports explicit syntax to simplify retrieval of hierarchical data
structures.

The next subject we investigate is analytical functions. Within the context of a single row (or tuple
variable), you can reference data in other rows and use it for comparisons and calculations.

Finally, this chapter discusses a helpful Oracle SQL feature allowing you to travel back in time:
flashback queries.

9.1 Subqueries Continued
Chapter 4 discussed various examples of subqueries, using the IN operator or standard logical
comparison operators. As a refresher, let’s start with two standard subquery examples.

The subquery in Listing 9-1 shows all 13 registrations we have for build courses; that is, for course
category 'BLD'.

Listing 9-1. Subquery Using the IN Operator

select r.attendee, r.course, r.begindate
from registrations r
where r.course in (select c.code
 from courses c
 where c.category='BLD');

233

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

ATTENDEE COURSE BEGINDATE
-------- ------ -----------
 7499 JAV 13-DEC-1999
 7566 JAV 01-FEB-2000
 7698 JAV 01-FEB-2000
 7788 JAV 13-DEC-1999
 7839 JAV 13-DEC-1999
 7876 JAV 13-DEC-1999
 7788 JAV 01-FEB-2000
 7782 JAV 13-DEC-1999
 7499 PLS 11-SEP-2000
 7876 PLS 11-SEP-2000
 7566 PLS 11-SEP-2000
 7499 XML 03-FEB-2000
 7900 XML 03-FEB-2000

Listing 9-2 shows how you can retrieve all employees who are younger than colleague 7566.

Listing 9-2. Single-Row Subquery Using a Comparison Operator

select e.empno, e.ename, e.init, e.bdate
from employees e
where e.bdate > (select x.bdate
 from employees x
 where x.empno = 7566);

 EMPNO ENAME INIT BDATE
-------- -------- ----- -----------
 7844 TURNER JJ 28-SEP-1968
 7900 JONES R 03-DEC-1969

Listing 9-2 shows an example of a single-row subquery. The subquery must return a single row,

because the comparison operator (>) in the third line would fail otherwise. If subqueries of this type
nevertheless return more than a single row, you get an Oracle error message, as you discovered in
Chapter 4 (see Listing 4-38).

This section continues the discussion of subqueries by explaining the possibilities of the ANY, ALL,
and EXISTS operators. You’ll also learn about correlated subqueries.

The ANY and ALL Operators
SQL allows you to combine standard comparison operators (<, >, =, and so on) with subqueries
returning any number of rows. You can do that by specifying ANY or ALL between the comparison
operator and the subquery. Listing 9-3 showsan example of using the ANY operator, showing all
employees with a monthly salary that is higher than at least one manager.

234

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Listing 9-3. ANY Operator Example

select e.empno, e.ename, e.job, e.msal
from employees e
where e.msal > ANY (select x.msal
 from employees x
 where x.job = 'MANAGER');

 EMPNO ENAME JOB MSAL
-------- -------- -------- --------
 7839 KING DIRECTOR 5000
 7788 SCOTT TRAINER 3000
 7902 FORD TRAINER 3000
 7566 JONES MANAGER 2975
 7698 BLAKE MANAGER 2850

Listing 9-4 shows an example of using the ALL operator, showing the “happy few” with a higher

salary than all managers.

Listing 9-4. ALL Operator Example

select e.empno, e.ename, e.job, e.msal
from employees e
where e.msal > ALL (select x.msal
 from employees x
 where x.job = 'MANAGER');

 EMPNO ENAME JOB MSAL
-------- -------- -------- --------
 7788 SCOTT TRAINER 3000
 7839 KING DIRECTOR 5000
 7902 FORD TRAINER 3000

Defining ANY and ALL
As the examples illustrate, the ANY and ALL operators work as follows:

� ANY ... means the result is true for at least one value returned by the subquery.

� ALL ... means the result is true for all values returned by the subquery.

Table 9-1 formulates the definitions of ANY and ALL a bit more formally, using iterated OR and AND
constructs. In the table, # represents any standard comparison operator: <, >, =, >=, <=, or <>. Also, V1, V2,
V3, and so on represent the values returned by the subquery.

235

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Table 9-1. Definition of ANY and ALL

X # ANY(subquery) X # ALL(subquery)

(X # V1) OR (X # V1) AND

(X # V2) OR (X # V2) AND

(X # V3) OR ... (X # V3) AND ...

Rewriting SQL Statements Containing ANY and ALL
In most cases, you can rewrite your SQL statements in such a way that you don’t need the ANY and ALL
operators. For example, we could have used a group function in Listing 9-4 to rebuild the subquery into
a single-row subquery, as shown in Listing 9-5.

Listing 9-5. Using the MAX Function in the Subquery, Instead of ALL

select e.ename, e.job, e.msal
from employees e
where e.msal > (select max(x.msal)
 from employees x
 where x.job = 'MANAGER');

ENAME JOB MSAL
-------- -------- --------
SCOTT TRAINER 3000
KING DIRECTOR 5000
FORD TRAINER 3000

Note that the following SQL constructs are logically equivalent:

� X = ANY(subquery) <=> X IN (subquery)

� X <> ALL(subquery) <=> X NOT IN (subquery)

Look at the following two rather special cases of ANY and ALL:

� X = ALL(subquery)

� X <> ANY(subquery)

If the subquery returns two or more different values, the first expression is always FALSE, because X
can never be equal to two different values at the same time. Likewise, if the subquery returns two or more
different values, the second expression is always TRUE, because any X will be different from at least one of
those two values from the subquery.

236

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Correlated Subqueries
SQL also supports correlated subqueries. Look at the example in Listing 9-6, and you will find out why
these subqueries are referred to as being correlated.

Listing 9-6. Correlated Subquery Example

select e.ename, e.init, e.msal
from employees e
where e.msal > (select avg(x.msal)
 from employees x
 where x.deptno = e.deptno -- Note the reference to e
);

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
JONES JM 2975
BLAKE R 2850
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

You might want to compare this query with Listing 8-30 in the previous chapter, because they are

similar. This query shows all employees who earn a higher salary than the average salary of their own
department. There is one thing that makes this subquery special: it contains a reference to the tuple
variable e (see e.DEPTNO in the fifth line) from the main query. This means that you cannot execute this
subquery independently, in isolation, because that would result in an Oracle error message. You must
interpret this subquery within the context of a specific row from the main query. The subquery is related
to the main query, thus the term correlated.

The Oracle DBMS processes the query in Listing 9-6 as follows:

� The tuple variable e ranges over the EMPLOYEES table, thus assuming 14 different
values.

� For each row e, the subquery is executed after replacing e.DEPTNO by the literal
department value of row e.

� Caution Re-executing a subquery for every single row of the main query may have a significant performance
impact. The Oracle optimizer will try to produce an efficient execution plan, and there are some smart optimization
algorithms for correlated subqueries; nevertheless, it is always a good idea to consider and test performance while
writing SQL statements for production systems. With many queries, performance with small data sets (such as you
would find in a development databaes) is quite good, but they do not perform well when large, near-production
size data sets are queried.

237

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

In mathematics, a distinction is made between free and bound variables. In the subquery of Listing
9-6, x is the free variable and e is bound by the main query.

Let’s look at another example in Listing 9-7. This query provides the fourth youngest employee of
the company or, to be more precise, all employees for which there are three younger colleagues. Note
that the result isn’t necessarily a set containing a single employee.

Listing 9-7. Another Example of a Correlated Subquery

select e.*
from employees e
where (select count(*)
 from employees x
 where x.bdate > e.bdate) = 3;

 EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ------ ----------- ------ ------ ------
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20

You can also formulate these types of queries using analytical functions, as described in Section 9.6

of this chapter.

The EXISTS Operator
Correlated subqueries often occur in combination with the EXISTS operator. Again, let’s start with an
example. The query in Listing 9-8 shows all course offerings without registrations.

Listing 9-8. Correlated Subquery with EXISTS Operator

select o.*
from offerings o
where not exists
 (select r.*
 from registrations r
 where r.course = o.course
 and r.begindate = o.begindate);

COURSE BEGINDATE TRAINER LOCATION
------ ----------- -------- --------
ERM 15-JAN-2001
PRO 19-FEB-2001 DALLAS
RSD 24-FEB-2001 7788 CHICAGO
XML 18-SEP-2000 BOSTON

The EXISTS operator is not interested in the actual rows (and column values) resulting from the

subquery, if any. This operator checks for only the existence of subquery results. If the subquery returns
at least one resulting row, the EXISTS operator evaluates to TRUE. If the subquery returns no rows at all,
the result is FALSE.

238

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Subqueries Following an EXISTS Operator
You could say that the EXISTS and NOT EXISTS operators are kind of empty set checkers. This implies that
it doesn’t matter which expressions you specify in the SELECT clause of the subquery. For example, you
could also have written the query of Listing 9-8 as follows:

select o.*
from offerings o
where not exists
 (select 'x'
 from registrations r ...

� Note The ANSI/ISO SQL standard defines * as being an arbitrary literal in this case.

Subqueries that follow an EXISTS operator are often correlated. Think about this for a moment. If
they are uncorrelated, their result is precisely the same for each row from the main query. There are only
two possible outcomes: the EXISTS operator results in TRUE for all rows or FALSE for all rows. In other
words, EXISTS followed by an uncorrelated subquery becomes an “all or nothing” operator.

� Caution A subquery returning a null value is not the same as a subquery returning nothing (that is, the empty
set). This will be demonstrated later in this section.

EXISTS, IN, or JOIN?
See Listing 9-9 for another EXISTS example, to finish this section. The query is intended to provide the
personal details of all employees who ever taught an SQL course.

Listing 9-9. Another Correlated Subquery with EXISTS Operator

select e.*
from employees e
where exists (select o.*
 from offerings o
 where o.course = 'SQL'
 and o.trainer = e.empno);

 EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ------ ----------- -------- ------ ------
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

239

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

This problem can also be solved with an IN operator, as shown in Listing 9-10. The query results are
omitted.

Listing 9-10. Alternative Formulation for Listing 9-9

select e.*
from employees e
where e.empno in (select o.trainer
 from offerings o
 where o.course = 'SQL')

You can also use a join to solve the problem, as shown in Listing 9-11. This is probably the most

obvious approach, although the choice between writing joins or subqueries is highly subjective. Some
people think “bottom up” and prefer subqueries; others think “top down” and prefer to write joins.

Listing 9-11. Another Alternative Formulation for Listing 9-9

select DISTINCT e.*
from employees e
 join
 offerings o
 on e.empno = o.trainer
where o.course = 'SQL'

Notice the DISTINCT option in the SELECT clause. Investigate what happens if you remove the

DISTINCT option in Listing 9-11. You’ll find that the query result will consist of three rows, instead of two.
So far, we have considered only subqueries in the WHERE clause. However, you can use subqueries in

other SQL statement components, such as the SELECT and FROM clauses. In the next sections, we will look
at subqueries in these other clauses.

NULLs with EXISTS AND IN in subquery results often cause problems for people writing SQL for
Oracle database systems, especially for those used to writing SQL for other database systems. Not only
can nulls in subquery results cause confusion, but they can lead to incorrect results.

There are several key concepts to keep in mind:

� NULL is not data, but rather a condition of data being unknown.

� NULL = NULL, NULL != NULL or NULL IN (NULL) always evaluates to UNKNOWN, which
is neither TRUE nor FALSE.

� It is not possible to join two rows with NULLs in the join column.

We illustrate our point about the trouble NULLs cause with EXISTS and IN queries with the reports in
Listing 9-12. The queries behind the reports show two different ways to generate a list of managers. One
approach uses IN; the other uses EXISTS. At face value, either approach works, and there seems to be no
difference between them.

Listing 9-12. Selecting all managers using IN or EXISTS

select ename
from employees
where empno in (select mgr from employees);

240

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

select e1.ename
from employees e1
where exists (select e2.mgr
 from employees e2
 where e1.empno = e2.mgr);

ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

As you see from Listing 9-12, the use of IN or EXISTS are equivalent in terms of results, though the

actual operations are different. IN builds a list of values that are used for comparison wth empno. EXISTS
executes the subquery for each empno and returns TRUE if the join finds a matching empno. However, the
two queries return the same results only because NULLs are not involved. If there was a NULL empno, the
EXISTS subquery would not return a record for that employee number, because a NULL empno value would
not join with the NULL mgr value (NULL = NULL does not evaluate to TRUE).

EXISTS answers the question, “is this value present in the specified table column?” If that value is
present (as indicated by at least one row being returned from the subquery), the answer is yes and the
EXISTS expression evaluates to TRUE. As NULLs cannot be equated, joining a NULL mgr to a NULL empno
does not return TRUE. Essentially, the query joins the inner and outer tables and returns the rows that
match, one at a time. If the main query value does not have a match in the subquery (i.e., the join does
not return at least one row), then the EXISTS evaluates to FALSE.

IN answers the question, “does the value exist anywhere in this list?” If one list value matches the
external value, then the expression evaluates to TRUE. One way to think of an IN list expression is to
rephrase it as a series of OR expressions. For example, the following:

1234 IN (1234, NULL)

is equivalent to:

1234 = 1234 OR 1234 = NULL

Each equality check can be evaluated separately and the result would be TRUE OR UNKNOWN. Reference

the truth table in 4.10 (in Chapter 4). TRUE OR UNKNOWN is TRUE. Essentially, once you find a match, you can
stop looking and ignore any previous NOT TRUE (FALSE or UNKNOWN) results. If the value does not match at
least one value in the list, then the expression returns FALSE.

241

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

NULLS with NOT EXISTS and NOT IN
Intuitively, NOT EXISTS and NOT IN should return the rows in a table that are not returned by EXISTS and
IN, respectively. This is true for NOT EXISTS, but when NULLs are encountered, NOT IN will not return the
rows not returned by IN. In the previous section, we reported the employees where were also managers.
In this section, we want to report on the employees who are not managers, so NOT EXISTS and NOT IN are
the expressions we can use. Listing 9-13 shows the results from using NOT EXISTS.

Listing 9-13. Selecting employees who are not managers using NOT EXISTS

select e1.ename
from employees e1
where not exists (select e2.mgr
 from employees e2
 where e1.empno = e2.mgr);

ENAME

SMITH
ALLEN
WARD
MARTIN
TURNER
ADAMS
JONES
MILLER

There are 14 employees, 6 who are managers (see Listing 9-12) and 8 who are not managers (see

Listing 9-13). Using EXISTS and NOT EXISTS, all of the employees are listed, regardless of the presence of a
NULL mgr state for one of the rows (employee KING).

Now look at the results in Listing 9-14, showing the use of NOT IN. (The set feedback on command in
the listing is specific to SQL*Plus). No rows are returned at all! Apparently we have all management and
no workers. Why is that? The reason lies in the question that NOT IN answers, and in how it goes about
answering that question.

Listing 9-14. Selecting employees who are not managers using NOT IN

set feedback on
select ename
from employees
where empno not in (select mgr from employees);

no rows selected

NOT IN also answers the question, “does the value exist anywhere in this list?” As long as no list value

matches the external value, then the expression evaluates to TRUE. One way to think of an NOT IN list
expression is to rephrase it as a series of AND expressions. For example, 1234 NOT IN (1234, NULL) is
equivalent to 1234 != 1234 AND empno != NULL. Each equality check can be evaluated separately and the
result would be TRUE AND UNKNOWN. Reference the truth table in 4.10. TRUE AND UNKNOWN is UNKNOWN. In order

242

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

for a row to be returned, the NOT IN expression must evaluate to TRUE, something it can never do as long
as one of the values in the NOT IN list has the state of NULL.

9.2 Subqueries in the SELECT Clause
Check out Listings 5-31 and 5-32 in Chapter 5, which demonstrate determining the number of
employees in each department. The ANSI/ISO SQL standard offers an alternative approach for that
problem, using a subquery in the SELECT clause, as shown in Listing 9-15.

Listing 9-15. Example of a Subquery in the SELECT Clause

select d.deptno, d.dname, d.location,
 (select count(*)
 from employees e
 where e.deptno = d.deptno) as emp_count
from departments d;

 DEPTNO DNAME LOCATION EMP_COUNT
-------- ---------- -------- ---------
 10 ACCOUNTING NEW YORK 3
 20 TRAINING DALLAS 5
 30 SALES CHICAGO 6
 40 HR BOSTON 0

You could argue that this is not only a correct solution, but it also is a very elegant solution. It’s

elegant, because the driving table for this query (see the FROM clause) is the DEPARTMENTS table. After all,
we are looking for information about departments, so the DEPARTMENTS table is the most intuitive and
obvious table to start our search for the result. The first three attributes (DEPTNO, DNAME, and LOCATION) are
“regular” attributes that can be found from the corresponding columns of the DEPARTMENTS table;
however, the fourth attribute (the number of employees) is not stored as a column value in the database.
See Chapter 1 for a discussion of database design and normalization as a technique to reduce
redundancy.

Because the department head count is not physically stored in a column of the DEPARTMENTS table,
we derive it by using a subquery in the SELECT clause. This is precisely how you can read this query: in
the FROM clause you visit the DEPARTMENTS table, and in the SELECT clause you select four expressions.
Without using an outer join, regular join, or GROUP BY, you still get the correct number of employees
(zero) for department 40.

� Note You could argue that the GROUP BY clause of the SQL language is redundant. You can solve most (if not all)
aggregation problems using a correlated subquery in the SELECT clause, without using GROUP BY at all.

As noted, the subquery in Listing 9-15 is correlated. d.DEPTNO has a different value for each row d of
the DEPARTMENTS table, and the subquery is executed four times for those different values: 10, 20, 30, and
40. Although it is not strictly necessary, it is a good idea to assign a column alias (EMP_COUNT in Listing

243

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

9-12) to the subquery expression, because it enhances the readability for both the query itself and for its
results.

� Note As with any feature or method of query construction, performance can be better or worse than another
method. Always test on production-like configurations and data sets to avoid the surprise of a solution that
performs well in development but is utterly unable to scale.

So far, we have distinguished only single-row queries and subqueries returning any number of rows.
At this point, it makes sense to identify a third subquery type, which is a subtype of the single-row
subquery type: scalar subqueries. The name indicates an important property of this type of subqueries:
the result not only consists of precisely one row, but also with precisely one column value. You can use
scalar subqueries almost everywhere in your SQL commands in places where a column expression or
literal value is allowed and makes sense. The scalar subquery generates the literal value.

In summary, you can say that SQL supports the following subquery hierarchy:

� Multirow subqueries: No restrictions

� Single-row subqueries: Result must contain a single row

� Scalar subqueries: Result must be a single row and a single column

9.3 Subqueries in the FROM Clause
The next clause we investigate is the FROM clause. Actually, the FROM clause is one of the most obvious
places to allow subqueries in SQL. Instead of specifying “real” table names, you simply provide
subqueries (or table expressions) to take their place as a derived table.

Listing 9-16 shows an example of a subquery in the FROM clause. The Oracle documentation refers to
these subqueries as inline views, as does this book. The name inline view will become clearer in Chapter
10, when we discuss views in general.

Listing 9-16. Inline View Example

select e.ename, e.init, e.msal
from employees e
 join
 (select x.deptno
 , avg(x.msal) avg_sal
 from employees x
 group by x.deptno) g
 using (deptno)
where e.msal > g.avg_sal;

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600

244

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

JONES JM 2975
BLAKE R 2850
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

A big difference between a “real” table and a subquery is that the real table has a name. Therefore, if

you use subqueries in the FROM clause, you must define a tuple variable (or table alias, in Oracle
terminology) over the result of the subquery. At the end of line 7 in Listing 9-16, we define tuple variable
g. This tuple variable allows us to refer to column expressions from the subquery, as shown by g.AVG_SAL
in the last line of the example. By the way, the query in Listing 9-16 is an alternative solution for the
query in Listing 9-6. One requirement is that the subquery must be independent of the outer query, it
cannot be correlated.

9.4 The WITH Clause
Listing 9-16 showed an example of using a subquery in a FROM clause. We could have written the same
query with a slightly different syntax, as shown in Listing 9-17. This construct is called a factored
subquery (or subquery factoring).

Listing 9-17. WITH Clause Example

WITH g AS
 (select x.deptno
 , avg(x.msal) avg_sal
 from employees x
 group by x.deptno)
select e.ename, e.init, e.msal
from employees e
 join g
 using (deptno)
where e.msal > g.avg_sal;

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
JONES JM 2975
BLAKE R 2850
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

As you can see, we have isolated the subquery definition, in lines 1 through 5, from the actual query

in lines 6 through 10. This makes the structure of the main query clearer. Using the WITH clause syntax
becomes even more attractive if you refer multiple times to the same subquery from the main query. You
can define as many subqueries as you like in a single WITH clause, separated by commas.

245

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

WITH v1 AS (select ... from ...)
, v2 AS (select ... from ...)
, v3 AS ...
select ...
from ...

There are several advantages to using factored subqueries. First, they can make development easier

by isolating each query (as I will show in Listing 9-18). Second, they make the code clearer. Using the
previous example would look as follows:

select ...
from (select ...
 from (select ...
 from (select ... from ...) v3
) v2
) v1

When there is a problem with the query, it can be difficult to locate the actual problem. By using

subquery factoring, you can create the subquery as a standalone query, then make it a factored subquery
using WITH, SELECT * from it to check for completeness, and add in additional predicates, data
transformations, exclude columns, and so on. If this query is also meant to be a factored subquery, you
can then name it and SELECT * from it to check for completeness, add in additional predicates, and so
on. Listing 9-18 shows how a statement using a factored subquery can be developed using a 3 step
process. Each step in Listing 9-18 is executed separately.

Listing 9-18. WITH Clause Development Example

select x.deptno
, avg(x.msal) avg_sal
from employees x
group by x.deptno;

WITH g AS
 (select x.deptno
 , avg(x.msal) avg_sal
 from employees x
 group by x.deptno)
select *
from g;

WITH g AS
 (select x.deptno
 , avg(x.msal) avg_sal
 from employees x
 group by x.deptno)
select e.ename, e.init, e.msal
from employees e
 join g
 using (deptno)
where e.msal > g.avg_sal;

246

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

If you define multiple subqueries in the WITH clause, you are allowed to refer to any subquery name
that you defined earlier in the same WITH clause; that is, the definition of subquery V2 can refer to V1 in its
FROM clause, and the definition of V3 can refer to both V1 and V2, as in the following:

WITH v1 AS (select ... from ...)
 , v2 AS (select ... from V1)
 , v3 AS (select ... from V2 join V1)
 select ...
 from ...

Under the hood, the Oracle DBMS has two ways to execute queries with a WITH clause:

� Merge the subquery definitions into the main query. This makes the subqueries
behave just like inline views.

� Execute the subqueries, store the results in a temporary structure, and access the
temporary structures from the main query.

See Oracle SQL Reference for more details and examples on the WITH clause and subquery factoring.

9.5 Hierarchical Queries
Relational tables are flat structures. All rows of a table are equally important, and the order in which the
rows are stored is irrelevant. However, some data structures have hierarchical relationships. A famous
example in most books about relational database design is the “bill of materials (BOM)” problem, where
you are supposed to design an efficient relational database structure to store facts about which
(sub)components are needed to build more complicated components, up to highly complicated objects
such as cars and airplanes. Figure 9-1 shows an ERM diagram with a typical solution. On the left, you see
the most generic solution with a many-to-many relationship, and on the right you see a typical solution
using two entities.

Figure 9-1. A solution for the “bill of materials” problem

Notice that for the solution on the left-hand side, if you replaced the entity name PPART with THING,
and you replaced the two relationship descriptions with “related to,” then you would have the ultimate
in generic data models! Although this book is not about database design, consider this joke as a serious
warning: don’t make your data models overly generic.

Even if hierarchical data structures are correctly translated into relational tables, the retrieval of
such structures can still be quite challenging. We have an example of a simple hierarchical relationship

247

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

in our sample tables: the management structure in the EMPLOYEES table is implemented with the MGR
column and its foreign key constraint to the EMPNO column of the same table.

� Note In hierarchical structures, it is common practice to refer to parent rows and children rows. Another
common (and self-explanatory) terminology is using a tree metaphor by referring to root, branch, and leaf rows.

START WITH and CONNECT BY
Oracle SQL supports a number of operators—and pseudo columns populated by those operators—to
facilitate queries against hierarchical data. Let’s look at a simple example first, shown in Listing 9-19.

Listing 9-19. Hierarchical Query Example

select ename, LEVEL
from employees
START WITH mgr is null
CONNECT BY NOCYCLE PRIOR empno = mgr;

ENAME LEVEL
-------- --------
KING 1
JONES 2
SCOTT 3
ADAMS 4
FORD 3
SMITH 4
BLAKE 2
ALLEN 3
WARD 3
MARTIN 3
TURNER 3
JONES 3
CLARK 2
MILLER 3

The START WITH and CONNECT BY clauses allow you to do the following:

� Identify a starting point (root) for the tree structure.

� Specify how you can walk up or down the tree structure from any row.

The START WITH and CONNECT BY clauses must be specified after the WHERE clause (if any) and before the
GROUP BY clause (if any).

248

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

� Note It is your own responsibility to indicate the correct starting point (or root) for the hierarchy. Listing 9-19
uses 'MGR is null' as a condition, because we know that the null value in the MGR column has a special meaning.
The Oracle DBMS treats each row for which the START WITH condition evaluates to TRUE as root for a separate tree
structure; that is, you can define multiple tree structures within the context of a single query.

The NOCYCLE keyword in the CONNECT BY clause is optional; however, if you omit NOCYCLE, you risk
ending up in a loop. If that happens, the Oracle DBMS returns the following error message:

ORA-01436: CONNECT BY loop in user data

Our EMPLOYEES table doesn’t contain any cyclic references, but specifying NOCYCLE never hurts.
Pay special attention to the placement of the PRIOR operator. The PRIOR operator always points to

the parent row. In Listing 9-19, PRIOR is placed before EMPNO, so we are able to find parent rows by
starting from the MGR column value of the current row and then searching the EMPNO column values in all
other rows for a match. If you put PRIOR in the wrong place, you define hierarchical relationships in the
opposite direction. Just see what happens in Listing 9-19 if you change the fourth line to CONNECT BY
PRIOR mgr = EMPNO or to CONNECT BY EmPnO = PRIOR MGR.

At first sight, the result in Listing 9-19 is not very impressive, since you just get a list of employee
names, followed by a number. And if we had omitted LEVEL from the SELECT clause, the result would have
been completely trivial. However, many things happened behind the scenes. We just have not exploited
the full benefits yet.

LEVEL, CONNECT_BY_ISCYCLE, and CONNECT_BY_ISLEAF
As a consequence of using START WITH and CONNECT BY, the Oracle DBMS assigns several pseudo column
values to every row. Listing 9-19 showed a first example of such a pseudo column: LEVEL. You can use
these pseudo column values for many purposes; for example, to filter specific rows in the WHERE clause or
to enhance the readability of your results in the SELECT clause.

The following are the hierarchical pseudo columns:

� LEVEL: The level of the row in the tree structure.

� CONNECT_BY_ISCYCLE: The value is 1 for each row with a child that is also a parent of
the same row (that is, you have a cyclic reference); otherwise, the value is 0.

� CONNECT_BY_ISLEAF: The value is 1 if the row is a leaf; otherwise, the value is 0.

Listing 9-20 shows an example using the LEVEL pseudo column combined with the LPAD function,
adding indentation to highlight the hierarchical query results.

Listing 9-20. Enhancing Readability with the LPAD Function

select lpad(' ',2*level-1)||ename as ename
from employees
start with mgr is null
connect by nocycle prior empno = mgr;

249

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

ENAME

 KING
 JONES
 SCOTT
 ADAMS
 FORD
 SMITH
 BLAKE
 ALLEN
 WARD
 MARTIN
 TURNER
 JONES
 CLARK
 MILLER

CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH
If you use START WITH and CONNECT BY to define a hierarchical query, you can use two interesting
hierarchical operators in the SELECT clause:

� CONNECT_BY_ROOT: This operator allows you to connect each row (regardless of its
level in the tree structure) with its own root.

� SYS_CONNECT_BY_PATH: This function allows you to display the full path from the
current row to its root.

See Listing 9-21 for an example of using both operators. Note that the START WITH clause in Listing 9-
21 creates three separate tree structures: one for each manager.

Listing 9-21. Using CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH

select ename
, connect_by_root ename as manager
, sys_connect_by_path(ename,' > ') as full_path
from employees
start with job = 'MANAGER'
connect by prior empno = mgr;

ENAME MANAGER FULL_PATH
-------- -------- -------------------------
JONES JONES > JONES
SCOTT JONES > JONES > SCOTT
ADAMS JONES > JONES > SCOTT > ADAMS
FORD JONES > JONES > FORD
SMITH JONES > JONES > FORD > SMITH
BLAKE BLAKE > BLAKE
ALLEN BLAKE > BLAKE > ALLEN
WARD BLAKE > BLAKE > WARD
MARTIN BLAKE > BLAKE > MARTIN

250

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

TURNER BLAKE > BLAKE > TURNER
JONES BLAKE > BLAKE > JONES
CLARK CLARK > CLARK
MILLER CLARK > CLARK > MILLER

You can specify additional conditions in the CONNECT BY clause, thus eliminating entire subtree

structures. Note the important difference with conditions in the WHERE clause: those conditions filter only
individual rows. See Oracle SQL Reference for more details and examples.

Hierarchical Query Result Sorting
If you want to sort the results of hierarchical queries, and you use a regular ORDER BY clause, the carefully
constructed hierarchical tree gets disturbed in most cases. In such cases, you can use the SIBLINGS
option of the ORDER BY clause. This option doesn’t destroy the hierarchy of the rows in the result. See
Listings 9-22 and 9-23 for an example, and watch what happens with the query result if we remove the
SIBLINGS option. Listing 9-22 shows the use of siblings. Listing 9-23 shows the results without that
keyword.

Listing 9-22. Results when ordering by siblings

select ename
, sys_connect_by_path(ename,'|') as path
from employees
start with mgr is null
connect by prior empno = mgr
order SIBLINGS by ename;

ENAME PATH
-------- -----------------------------
KING |KING
BLAKE |KING|BLAKE
ALLEN |KING|BLAKE|ALLEN
JONES |KING|BLAKE|JONES
MARTIN |KING|BLAKE|MARTIN
TURNER |KING|BLAKE|TURNER
WARD |KING|BLAKE|WARD
CLARK |KING|CLARK
MILLER |KING|CLARK|MILLER
JONES |KING|JONES
FORD |KING|JONES|FORD
SMITH |KING|JONES|FORD|SMITH
SCOTT |KING|JONES|SCOTT
ADAMS |KING|JONES|SCOTT|ADAMS

Listing 9-23. Results from a standard ORDER BY clause

select ename
, sys_connect_by_path(ename,'|') as path
from employees

251

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

start with mgr is null
connect by prior empno = mgr
order by ename;

ENAME PATH
-------- ------------------------------
ADAMS |KING|JONES|SCOTT|ADAMS
ALLEN |KING|BLAKE|ALLEN
BLAKE |KING|BLAKE
CLARK |KING|CLARK
FORD |KING|JONES|FORD
JONES |KING|JONES
JONES |KING|BLAKE|JONES
KING |KING
MARTIN |KING|BLAKE|MARTIN
MILLER |KING|CLARK|MILLER
SCOTT |KING|JONES|SCOTT
SMITH |KING|JONES|FORD|SMITH
TURNER |KING|BLAKE|TURNER
WARD |KING|BLAKE|WARD

9.6 Analytical Functions
This section introduces the concept of analytical functions, which are a very powerful part of the
ANSI/ISO SQL standard syntax. Analytical functions enable you to produce derived attributes that would
otherwise be very complicated to achieve in SQL. Rankings, Top N reports, and running totals are all
possible using analytical SQL. Not just possible, but the resulting statement is clear and performance is
usually better than multiple-pass statements.

Earlier in this chapter, in Section 9.2, you saw how subqueries in the SELECT clause allow you to add
derived attributes to the SELECT clause of your queries. Analytical functions provide similar functionality,
though with enhanced statement clarity and improved performance.

� Note You always should test the performance of the analytical functions on production-like data sets. These
functions are designed for use with large data sets and are optimized accordingly. When these functions are used
with small data sets, as you might find in development, they may not perform as well as other statements. Do not
conclude that the performance is unacceptable until you test with appropriately sized data sets.

Let’s take a look at a simple query, reporting the salary ranking by department for all employees.
Listing 9-24 shows the query and the results.

252

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Listing 9-24. Ranking employee salary using multiple table access

SELECT e1.deptno, e1.ename, e1.msal,
 (SELECT COUNT(1)
 FROM employees e2
 WHERE e2.msal > e1.msal)+1 sal_rank
FROM employees e1
ORDER BY e1.msal DESC;

DEPTNO ENAME MSAL SAL_RANK
------ -------- ------ --------
 10 KING 5000 1
 20 FORD 3000 2
 20 SCOTT 3000 2
 20 JONES 2975 4
 30 BLAKE 2850 5
 10 CLARK 2450 6
 30 ALLEN 1600 7
 30 TURNER 1500 8
 10 MILLER 1300 9
 30 WARD 1250 10
 30 MARTIN 1250 10
 20 ADAMS 1100 12
 30 JONES 800 13
 20 SMITH 800 13

This version of the query doesn’t use an analytical function. It uses a more traditional, subquery-

based approach to the problem of ranking. The problem is that the subquery essentially represents an
additional query to the employees table for each row that is being ranked. If the employees table is large,
this can result in a large number of data reads and consume minutes, perhaps hours, of response time.
Listing 9-25 generates the same report using the analytical function RANK.

Listing 9-25. Ranking employee salary using analytical funcions

SELECT e1.deptno, e1.ename, e1.msal,
 RANK() OVER (ORDER BY e1.msal DESC) sal_rank
FROM employees e1
ORDER BY e1.msal DESC;

DEPTNO ENAME MSAL SAL_RANK
------ -------- ------ --------
 10 KING 5000 1
 20 FORD 3000 2
 20 SCOTT 3000 2
 20 JONES 2975 4
 30 BLAKE 2850 5
 10 CLARK 2450 6
 30 ALLEN 1600 7
 30 TURNER 1500 8
 10 MILLER 1300 9

253

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

 30 WARD 1250 10
 30 MARTIN 1250 10
 20 ADAMS 1100 12
 30 JONES 800 13
 20 SMITH 800 13

Using the analytical function creates a statement that is simpler and self documenting. Figure 9-2

illustrates the basic format of the analytical function.

Figure 9-2. Basic syntax for analytical functions

The use of the term OOVER indicates an analytical function, something you need to keep in mind as
there are analytical functions with the same names as regular functions. For example, the analytical
functions SUM and AVG have the same names as their non-analytical counterparts.

A key clause is ORDER BY. This indicates the order in which the functions are applied. In the preceding
example, RANK is applied according to the employee salary. Remember that the default for ORDER BY is
ascending, smallest to largest, so you have to specify the keyword DESC, for descending, to sort from
largest to smallest. The ORDER BY clause must come last in the analytical function.

ORDER BY VERSUS order by

Do take care to remember that the statement ORDER BY and the function ORDER BY are independent of
each other. If you place another clause after the ORDER BY in a function call, you get the following rather
cryptic error message:

 PARTITION BY empno) prev_sal
 *
ERROR at line 6:
ORA-00907: missing right parenthesis

The ORDER BY in a function call applies only to the evaluation of that function, and has nothing to do with
sorting the rows to be returned by the statement.

Partitions
A partition is a set of rows defined by data values in the result set. The default partition for any function
is the entire result set. You can have one partition clause per function, though it may be a composite

254

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

partition, including more than one data value. The PARTITION BY clause must come before the ORDER BY
clause. Figure 9-3 illustrates the basic format of the analytical function using a PARTITION.

Figure 9-3. Analytical function partitioning syntax

When a partition is defined, the rows belonging to each partition are grouped together and the
function is applied within each group. In Listing 9-26, one RRANK is for the entire company and the second
RANK is within each department.

Listing 9-26. Ranking employee salary within the company and department

SELECT e1.deptno, e1.ename, e1.msal,
 RANK() OVER (ORDER BY e1.msal DESC) sal_rank,
 RANK() OVER (PARTITION BY e1.deptno
 ORDER BY e1.msal DESC) dept_sal_rank
FROM employees e1
ORDER BY e1.deptno ASC, e1.msal DESC;

DEPTNO ENAME MSAL SAL_RANK DEPT_SAL_RANK
------ -------- ------ -------- -------------
 10 KING 5000 1 1
 10 CLARK 2450 6 2
 10 MILLER 1300 9 3
 20 FORD 3000 2 1
 20 SCOTT 3000 2 1
 20 JONES 2975 4 3
 20 ADAMS 1100 12 4
 20 SMITH 800 13 5
 30 BLAKE 2850 5 1
 30 ALLEN 1600 7 2
 30 TURNER 1500 8 3
 30 MARTIN 1250 10 4
 30 WARD 1250 10 4
 30 JONES 800 13 6

Functions cannot span a partition boundary, which is the condition where the partition value

changes. When the deptno changes value, the RANK() with the PARTITION BY e1.deptno ‘resets’ to 1. Other
functions, such as LAG or LEAD, cannot reference rows outside the current row’s partition. Listing 9-27
shows how to reference data in rows other than the current row.

255

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Listing 9-27. Listing employee current and previous salaries

SELECT empno
 , begindate
 , enddate
 , msal
 , LAG(msal) OVER (PARTITION BY empno
 ORDER BY begindate) prev_sal
FROM history
ORDER BY empno, begindate;

EMPNO BEGINDATE ENDDATE MSAL PREV_SAL
----- --------- --------- ------ --------
 7369 01-JAN-00 01-FEB-00 950
 7369 01-FEB-00 800 950
 7499 01-JUN-88 01-JUL-89 1000
 7499 01-JUL-89 01-DEC-93 1300 1000
 7499 01-DEC-93 01-OCT-95 1500 1300
 7499 01-OCT-95 01-NOV-99 1700 1500
 7499 01-NOV-99 1600 1700

Here is an example of using the LAG function to calculate the raise someone received. The LAG

function returns the same datatype as the expression, in this case a number, so it can be used in an
expression itself. Listing 9-28 shows how to use the current and previous salaries, the raise in pay can be
calculated.

Listing 9-28. Using LAG to calculate a raise

SELECT empno
 , begindate
 , enddate
 , msal
 , LAG(msal) OVER (PARTITION BY empno
 ORDER BY begindate) prev_sal
 , msal - LAG(msal) OVER (PARTITION BY empno
 ORDER BY begindate) raise
FROM history
ORDER BY empno, begindate;

EMPNO BEGINDATE ENDDATE MSAL PREV_SAL RAISE
----- --------- --------- ------ -------- ------
 7369 01-JAN-00 01-FEB-00 950
 7369 01-FEB-00 800 950 -150
 7499 01-JUN-88 01-JUL-89 1000
 7499 01-JUL-89 01-DEC-93 1300 1000 300
 7499 01-DEC-93 01-OCT-95 1500 1300 200
 7499 01-OCT-95 01-NOV-99 1700 1500 200
 7499 01-NOV-99 1600 1700 -100

256

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Notice that the LAG(msal) does not look ‘backward’ when the empno changes from 7369 to 7499. A
common mistake is to not specify the correct PARTITION BY and the function returns data that you did
not intend. It is always a good practice to manually and visually validate the data as you are writing the
query.

Function Processing
There are 3 distinct phases in which statements containing analytic functions are processed. They are
shown in the following list. The list also shows the steps within each phase.

It is very important to keep in mind that all of the data retrieval for the query occurs before the
analytical functions are executed. It is important to keep this in mind as it restricts what you can do with
analytical functions in a single query.

1. Execute the query clauses, except ORDER BY

 SELECT

 WHERE/joins

 GROUP BY/HAVING

2. Execute the analytical function. This phase occurs once for every function in
the statement.

 Define the partition(s)

. Order the data within each partition

. Define the window

 Apply function

3. Sort query results per the statement’s ORDER BY clause

Since analytical functions are not processed until after the WHERE clause has been evaluated, the use
of analytical functions in the WHERE clause is not supported. (Similarly, you cannot apply analytic
functions in a HAVING clause). If you try to use one in the WHERE clause, you get a somewhat cryptic error,
as shown in Listing 9-29.

Listing 9-29. Error resuling from analytical function in WHERE clause.

SELECT ename
 , job
 , mgr
 , msal
 , DENSE_RANK() OVER (ORDER BY msal DESC) sal_rank

257

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

FROM employees
WHERE (DENSE_RANK() OVER (ORDER BY msal DESC)) <= 3
ORDER BY msal DESC;

WHERE (DENSE_RANK() OVER (ORDER BY msal DESC)) <= 3
 *
ERROR at line 7:
ORA-30483: window functions are not allowed here

If you want to filter records based on an analytical function, you will need to create a subquery
which uses the function and then use the resulting value to filter on as shown in Listing 9-30.

Listing 9-30. Using a factored subquery to filter on an analytical function.

WITH ranked_salaries AS
(SELECT ename
 , job
 , mgr
 , msal
 , DENSE_RANK() OVER (ORDER BY msal DESC) sal_rank
 FROM employees
)
SELECT ename
 , job
 , mgr
 , msal
 , sal_rank
FROM ranked_salaries
WHERE sal_rank <= 3
ORDER BY msal DESC;

ENAME JOB MGR MSAL SAL_RANK
-------- -------- ----- ------ --------
KING DIRECTOR 5000 1
SCOTT TRAINER 7566 3000 2
FORD TRAINER 7566 3000 2
JONES MANAGER 7839 2975 3

Analytical functions enable you to reference other rows and group data in different ways. This will

require that you begin to look at your data and query requirements in a more complex way, which will be
your biggest challenge to leverage analytical functions. Begin to look for opportunities to use these
functions as you get more familiar with them. When you find yourself accessing the same table several
times in a query, this might indicate that the information you are wanting can be derived using
analytical functions.

While the specific functions are documented in the SQL Reference Guide, a more thorough
treatment of the functions, partitions and windows are covered in Oracle Data Warehousing Guide:SQL
for Analysis and Reporting.

258

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

9.7 Flashback Features
This section covers some Oracle-specific extensions of the SQL language. Although they might appear
slightly off topic, the flashback features are simply too valuable to remain uncovered in this book.

In Chapter 6, we talked about the concept of read consistency. Read consistency means that your
SQL statements always get a consistent view of the data, regardless of what other database users or
applications do with the same data at the same time. The Oracle DBMS provides a snapshot of the data
at the point in time when the statement execution started. In the same chapter, you also saw that you
can change your session to be READ ONLY, so that your query results depend on the data as it was at the
beginning of your session.

The Oracle DBMS has its methods to achieve this, without using any locking techniques affecting
other database users or applications. How this is done is irrelevant for this book. This section shows
some interesting ways to use the same technique, by stating explicitly in your queries that you want to go
back in time.

� Note The flashback query feature may need some configuration efforts before you can use it. This is the task of
a database administrator. Therefore, it is not covered in this book. See the Oracle documentation for more details.

Before we start our flashback query experiments, we first create a temporary copy of the EMPLOYEES
table, as shown in Listing 9-31. (The listing is generated using SQL*Plus). This allows us to perform
various experiments without destroying the contents of the real EMPLOYEES table. We also change the
NLS_TIMESTAMP_FORMAT parameter with the ALTER SESSION command, to influence how timestamp values
are displayed on the screen.

Listing 9-31. Preparing for the Flashback Examples

SQL> create table e as select * from employees;
Table created.

SQL> alter session set nls_timestamp_format='DD-MON-YYYY HH24:MI:SS.FF3';
Session altered.

SQL> select localtimestamp as table_created from dual;
TABLE_CREATED
--
01-OCT-2004 10:53:42.746

SQL> update e set msal = msal + 10;
14 rows updated.
SQL> commit;
Commit complete.

259

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

SQL> select localtimestamp as after_update_1 from dual;
AFTER_UPDATE_1

01-OCT-2004 10:54:26.138

SQL> update e set msal = msal - 20 where deptno = 10;
3 rows updated.
SQL> commit;
Commit complete.

SQL> select localtimestamp as after_update_2 from dual;
AFTER_UPDATE_2

01-OCT-2004 10:54:42.602
SQL> delete from e where deptno <= 20;
8 rows deleted.
SQL> commit;
Commit complete.

SQL> select localtimestamp as now from dual;
NOW

01-OCT-2004 10:55:25.623

SQL>

� Tip Don’t execute these four steps too quickly in a row. You should take some time in between the steps. This
makes it much easier during your experiments to go back to a specific point in time.

AS OF
Listings 9-32 to 9-34 show a first example of a flashback query. First, we select the current situation with
a regular query (Listing 9-32). Then we use the AS OF TIMESTAMP option in the FROM clause to go back in
time (Listing 9-33). Finally, we look at what happens when you try to go back in time beyond the amount
of historical data that Oracle maintains (Listing 9-34). As in examples in earlier chapters, we use the
SQL*Plus ampersand (&) substitution trick, which allows us to repeat the query conveniently with
different timestamp values.

Listing 9-32. Evaluating the current situation

select empno, ename, deptno, msal
from e;

 EMPNO ENAME DEPTNO MSAL
-------- -------- -------- --------
 7499 ALLEN 30 1610

260

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

 7521 WARD 30 1260
 7654 MARTIN 30 1260
 7698 BLAKE 30 2860
 7844 TURNER 30 1510
 7900 JONES 30 810

Listing 9-33. Querying as of some point in the past

select empno, ename, deptno, msal
from e
 AS OF TIMESTAMP to_timestamp('01-OCT-2004 10:53:47.000');

 EMPNO ENAME DEPTNO MSAL
-------- -------- -------- --------
 7369 SMITH 20 800
 7499 ALLEN 30 1600
 7521 WARD 30 1250
 7566 JONES 20 2975
 7654 MARTIN 30 1250
 7698 BLAKE 30 2850
 7782 CLARK 10 2450
 7788 SCOTT 20 3000
 7839 KING 10 5000
 7844 TURNER 30 1500
 7876 ADAMS 20 1100
 7900 JONES 30 800
 7902 FORD 20 3000
 7934 MILLER 10 1300

Listing 9-34. Querying for a point too far back in time

select empno, ename, deptno, msal
from e
 AS OF TIMESTAMP to_timestamp('01-OCT-2004 10:53:42.000');
 *
ERROR at line 2:
ORA-01466: unable to read data - table definition has changed

Of course, the timestamps to be used in Listing 9-32 depend on the timing of your experiments.

Choose appropriate timestamps if you want to test these statements yourself. If you executed the steps
of Listing 9-31 with some decent time intervals (as suggested), you have enough appropriate candidate
values to play with.

The Oracle error message at the bottom of Listing 9-32 indicates that this query is trying to go back
too far in time. In this case, table E didn’t even exist. Data definition changes (ALTER TABLE E ...) may also
prohibit flashback queries, as suggested by the error message text.

261

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

VERSIONS BETWEEN
In Listing 9-35, we go one step further, using the VERSIONS BETWEEN operator. Now we get the complete
history of the rows—that is, as far as the Oracle DBMS is able reconstruct them.

Listing 9-35. Flashback example: VERSIONS BETWEEN syntax

break on empno

select empno, msal
, versions_starttime
, versions_endtime
from e
 versions between timestamp minvalue and maxvalue
where deptno = 10
order by empno, versions_starttime nulls first;

 EMPNO MSAL VERSIONS_STARTTIME VERSIONS_ENDTIME
-------- -------- ------------------------- -------------------------
 7782 2450 01-OCT-2004 10:54:23.000
 2460 01-OCT-2004 10:54:23.000 01-OCT-2004 10:54:41.000
 2440 01-OCT-2004 10:54:41.000 01-OCT-2004 10:55:24.000
 2440 01-OCT-2004 10:55:24.000
 7839 5000 01-OCT-2004 10:54:23.000
 5010 01-OCT-2004 10:54:23.000 01-OCT-2004 10:54:41.000
 4990 01-OCT-2004 10:54:41.000 01-OCT-2004 10:55:24.000
 4990 01-OCT-2004 10:55:24.000
 7934 1300 01-OCT-2004 10:54:23.000
 1310 01-OCT-2004 10:54:23.000 01-OCT-2004 10:54:41.000
 1290 01-OCT-2004 10:54:41.000 01-OCT-2004 10:55:24.000
 1290 01-OCT-2004 10:55:24.000

By using the VERSIONS BETWEEN operator in the FROM clause, you introduce several additional pseudo

columns, such as VERSIONS_STARTTIME and VERSIONS_ENDTIME. You can use these pseudo columns in your
queries.

By using the correct ORDER BY clause (watch the NULLS FIRST clause in Listing 9-35), you get a
complete historical overview. You don’t see a start time for the three oldest salary values because you
created the rows too long ago, and you don’t see an end time for the last value because it is the current
salary value.

FLASHBACK TABLE
In Chapter 7, you learned that you can rescue an inadvertently dropped table from the recycle bin with
the FLASHBACK TABLE command. Listing 9-36 shows another example of this usage.

262

 CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

Listing 9-36. Using FLASHBACK TABLE ... TO BEFORE DROP

drop table e;
Table dropped.

flashback table e to before drop;
Flashback complete.

select * from e;

 EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ------ ----------- ------ ------ ------
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1610 300 30
 7521 WARD TF SALESREP 7698 22-FEB-1962 1260 500 30
 7654 MARTIN P SALESREP 7698 28-SEP-1956 1260 1400 30
 7698 BLAKE R MANAGER 7839 01-NOV-1963 2860 30
 7844 TURNER JJ SALESREP 7698 28-SEP-1968 1510 0 30
 7900 JONES R ADMIN 7698 03-DEC-1969 810 30

You can go back to any point in time with the FLASHBACK TABLE command, as you can see in Listing 9-

37. Note the following important difference: Listings 9-32 and 9-33 show queries against table E where
you go back in time, but the FLASHBACK TABLE example in Listing 9-37 changes the database and restores
table E to a given point in time.

Listing 9-37. Another FLASHBACK TABLE Example

select count(*) from e;

COUNT(*)

 6

flashback table e to timestamp to_timestamp('×tamp');
Enter value for timestamp: 01-OCT-2004 10:54:00.000

Flashback complete.

select count(*) from e;

COUNT(*)

 14

It is not always possible to go back in time with one table using the FLASHBACK TABLE command. For

example, you could have constraints referring to other tables prohibiting such a change. See Oracle SQL
Reference for more details about the FLASHBACK TABLE command.

263

CHAPTER 9 � RETRIEVAL: SOME ADVANCED FEATURES

264

9.8 Exercises
You can practice applying the advanced retrieval functions covered in this chapter in the following
exercises. The answers are presented in Appendix B.

1. It is normal practice that (junior) trainers always attend a course taught by a
senior colleague before teaching that course themselves. For which
trainer/course combinations did this happen?

2. Actually, if the junior trainer teaches a course for the first time, that senior
colleague (see the previous exercise) sits in the back of the classroom in a
supporting role. Try to find these course/junior/senior combinations.

3. Which employees never taught a course?

4. Which employees attended all build courses (category BLD)?
They are entitled to get a discount on the next course they attend.

5. Provide a list of all employees having the same monthly salary and
commission as (at least) one employee of department 30. You are interested in
only employees from other departments.

6. Look again at Listings 9-3 and 9-4. Are they really logically equivalent? Just for
testing purposes, search on a nonexisting job and execute both queries again.
Explain the results.

7. You saw a series of examples in this chapter about all employees that ever
taught an SQL course (in Listings 9-9 through 9-11). How can you adapt these
queries in such a way that they answer the negation of the same question (…
all employees that never …)?

8. Check out your solution for exercise 4 in Chapter 8: “For all course offerings,
list the course code, begin date, and number of registrations. Sort your results
on the number of registrations, from high to low.” Can you come up with a
more elegant solution now, without using an outer join?

9. Who attended (at least) the same courses as employee 7788?

10. Give the name and initials of all employees at the bottom of the management
hierarchy, with a third column showing the number of management levels
above them.

C H A P T E R 10

� � �

Views

This chapter covers views, a very important component of the relational model (see Ted Codd’s rule 6, in
Chapter 1). The first section explains the concept of views. The second section discusses how to use the
CREATE VIEW command to create views. In the next section, you’ll learn about the various ways you can
use views in SQL, in the areas of retrieval, logical data independency, and security.

Then we explore the (im)possibilities of data manipulation via views. How does it work, which are
the constraints, and what should we consider? You’ll learn about updatable views, nonupdatable views,
and the WITH CHECK OPTION clause of the CREATE VIEW command.

Section 10.5 discusses data manipulation via inline views. This name is slightly confusing, because
inline views are not “real” views. Rather, they are subqueries in the FROM clause, as discussed in the
previous chapter. Data manipulation via inline views allows you to perform various complicated and
creative data manipulation operations, which would otherwise be very complex (or impossible) via the
underlying base tables.

Section 10.6 covers views and performance. Following that is a section about materialized views.
Materialized views are very popular in data warehousing environments, which have relatively high data
volumes with mainly read-only access. Materialized views allow you to improve query response times
with some form of controlled redundancy.

10.1 What Are Views?
The result of a query is always a table, or more precisely, a derived table. Compared with “real” tables in
the database, the result of a query is volatile, but nevertheless, the result is a table. The only thing that is
missing for the query result is a name. Essentially, a view is nothing more than a query with a given
name. A more precise definition is as follows:

A view is a virtual table with the result of a stored query as its “contents,” which are
derived each time you access the view.

The first part of this definition states two things:

� A view is a virtual table: That is, you can treat a view (in almost all circumstances)
as a table in your SQL statements. Every view has a name, and that’s why views are
also referred to as named queries. Views have columns, each with a name and a
datatype, so you can execute queries against views, and you can manipulate the
“contents” of views (with some restrictions) with INSERT, UPDATE, DELETE, and MERGE
commands.

� A view is a virtual table: In reality, when you access a view, it only behaves like a
table. Views don’t have any rows; that’s why the view definition says “contents”

265

CHAPTER 10 � VIEWS

(within quotation marks). You define views as named queries, which are stored in
the data dictionary; that’s why another common term for views is stored queries.
Each time you access the “contents” of a view, the Oracle DBMS retrieves the view
query from the data dictionary and uses that query to produce the virtual table.

Data manipulation on a view sounds counterintuitive; after all, views don’t have any rows.
Nevertheless, views are supposed to behave like tables as much as possible. If you issue data
manipulation commands against a view, the DBMS is supposed to translate those commands into
corresponding actions against the underlying base tables. Note that some views are not updatable; that’s
why Ted Codd’s rule 6 (see Chapter 1) explicitly refers to views being theoretically updatable. We’ll
discuss data manipulation via views in Section 10.4 of this chapter.

Views are not only dependent on changes in the contents of the underlying base tables, but also on
certain changes in the structure of those tables. For example, a view doesn’t work anymore if you drop or
rename columns of the underlying tables that are referenced in the view definition.

10.2 View Creation
You can create views with the CREATE VIEW command. Figure 10-1 shows the corresponding syntax
diagram.

Figure 10-1. A CREATE VIEW syntax diagram

The OOR REPLACE option allows you to replace an existing view definition. This is especially useful if
you have granted various privileges on your views. View privileges are not retained when you use the
DROP VIEW / CREATE VIEW command sequence (as explained later in this section), but a CREATE OR REPLACE
VIEW command does preserve them. The FORCE option doesn’t check whether the underlying base tables
(used in the view definition) exist or whether you have sufficient privileges to access those base tables.
Obviously, these conditions must eventually be met at the time you start using your view definition.

Normally, views inherit their column names from the defining query. However, you should be aware
of some possible complications. For example, you might have a query result on your screen showing
multiple columns with the same name, and you may have column headings showing functions or other
arbitrary column expressions. Obviously, you cannot use query results with these problems as the basis

266

 CHAPTER 10 � VIEWS

for a view definition. Views have the same column naming rules and constraints as regular tables:
column names must be different, and they cannot contain characters such as brackets and arithmetic
operators. You can solve such problems in two ways:

� You can specify column aliases in the SELECT clause of the defining query, in such
a way that the column headings adhere to all column naming rules and
conventions. In this book’s examples, we use this method as much as possible.

� You can specify explicit column aliases in the CREATE VIEW command between the
view name and the AS clause (see Figure 10-1).

The WITH CHECK OPTION and WITH READ ONLY options influence view behavior under data
manipulation activity, as described later in this chapter, in Section 10-4.

Listing 10-1 shows two very similar SQL statements. However, note the main difference; the first
statement creates a view, and the second statement creates a table.

Listing 10-1. Views vs. Tables

SQL> create view dept20_v as
 2 select * from employees where deptno = 20;

View created.

SQL> create table dept20_t as
 2 select * from employees where deptno = 20;

Table created.

SQL>

The “contents” of the view DEPT20_V will always be fully dependent on the EMPLOYEES table. The table

DEPT20_T uses the current EMPLOYEES table as only a starting point. Once created, it is a fully independent
table with its own contents.

Creating a View from a Query
Listing 10-2 shows an example of a regular query with its result. The query is a join over three tables,
providing information about all employees and their departments. Note that we use an alias in the
SELECT clause (see line 6) to make sure that all columns in the query result have different names. See line
2, where you select the ENAME column, too.

267

CHAPTER 10 � VIEWS

Listing 10-2. A Regular Query, Joining Three Tables

SQL> select e.empno
 2 , e.ENAME
 3 , e.init
 4 , d.dname
 5 , d.location
 6 , m.ENAME as MANAGER
 7 from employees e
 8 join
 9 departments d using (deptno)
 10 join
 11 employees m on (e.empno = d.mgr);

 EMPNO ENAME INIT DNAME LOCATION MANAGER
-------- -------- ----- ---------- -------- -------
 7369 SMITH N TRAINING DALLAS JONES
 7499 ALLEN JAM SALES CHICAGO BLAKE
 7521 WARD TF SALES CHICAGO BLAKE
 7566 JONES JM TRAINING DALLAS JONES
 7654 MARTIN P SALES CHICAGO BLAKE
 7698 BLAKE R SALES CHICAGO BLAKE
 7782 CLARK AB ACCOUNTING NEW YORK CLARK
 7788 SCOTT SCJ TRAINING DALLAS JONES
 7839 KING CC ACCOUNTING NEW YORK CLARK
 7844 TURNER JJ SALES CHICAGO BLAKE
 7876 ADAMS AA TRAINING DALLAS JONES
 7900 JONES R SALES CHICAGO BLAKE
 7902 FORD MG TRAINING DALLAS JONES
 7934 MILLER TJA ACCOUNTING NEW YORK CLARK

14 rows selected.

SQL>

Listing 10-3 shows how you can transform this query into a view definition, by inserting one

additional line at the beginning of the command.

Listing 10-3. Creating a View from the Query in Listing 10-2

SQL> create view empdept_v as -- This line is added
 2 select e.empno
 3 , e.ENAME
 4 , e.init
 5 , d.dname
 6 , d.location
 7 , m.ENAME as MANAGER
 8 from employees e
 9 join
 10 departments d using (deptno)
 11 join

268

 CHAPTER 10 � VIEWS

 12 employees m on (m.empno = d.mgr);

View created.

SQL>

This view is now a permanent part of your collection of database objects. However, note that if we

had not used an alias for m.ENAME, Listing 10-3 would give the following Oracle error message:

ORA-00957: duplicate column name

Getting Information About Views from the Data Dictionary
Listing 10-4 queries the USER_OBJECTS data dictionary view. As you can see, you now have two views in
your schema: DEPT20_V and EMPDEPT_V.

Listing 10-4. Querying the Data Dictionary to See Your Views

SQL> select object_name, object_type
 2 from user_objects
 3 where object_type in ('TABLE','VIEW')
 4 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE
------------------------------ -----------
COURSES TABLE
DEPARTMENTS TABLE
DEPT20_T TABLE
E TABLE
EMPLOYEES TABLE
HISTORY TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
SALGRADES TABLE
DEPT20_V VIEW
EMPDEPT_V VIEW

11 rows selected.

SQL>

Listing 10-5 shows that you can use the SQL*Plus DESCRIBE command on a view, just as you can on

regular tables, and it also shows an example of a query against a view.

269

CHAPTER 10 � VIEWS

Listing 10-5. Using DESCRIBE and Writing Queries Against Views

SQL> describe empdept_v
Name Null? Type
----------------------------- -------- -------------
EMPNO NOT NULL NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)
DNAME NOT NULL VARCHAR2(10)
LOCATION NOT NULL VARCHAR2(8)
MANAGER NOT NULL VARCHAR2(8)

SQL> select * from empdept_v where manager = 'CLARK';

 EMPNO ENAME INIT DNAME LOCATION MANAGER
-------- -------- ----- ---------- -------- --------
 7934 MILLER TJA ACCOUNTING NEW YORK CLARK
 7839 KING CC ACCOUNTING NEW YORK CLARK
 7782 CLARK AB ACCOUNTING NEW YORK CLARK

SQL>

You can query the USER_VIEWS data dictionary view to retrieve your view definitions, as shown in

Listing 10-6.

� Note The two leading SQL*Plus commands in Listing 10-6 are used only to make the results more readable.
Chapter 11 discusses these (and many other) SQL*Plus commands in more detail.

Listing 10-6. Retrieving View Definitions from the Data Dictionary

SQL> set long 999
SQL> column text format a42 word wrapped

SQL> select view_name, text
 2 from user_views;

VIEW_NAME TEXT
------------------------------ --
DEPT20_V select "EMPNO","ENAME","INIT","JOB",
 "MGR","BDATE","MSAL","COMM","DEPTNO"
 from employees where deptno=20

EMPDEPT_V select e.empno
 , e.ENAME
 , e.init
 , d.dname

270

 CHAPTER 10 � VIEWS

 , d.location
 , m.ENAME as MANAGER
 from employees e
 join
 departments d using (deptno)
 join
 employees m on (m.empno = d.mgr)

SQL>

Apparently, if you define a view with a query starting with SELECT * FROM ..., the asterisk (*) gets

expanded (and stored) as a comma-separated list of column names. Compare the query in Listing 10-1,
where you created the DEPT20_V view, with the TEXT column contents in Listing 10-6.

Replacing and Dropping Views
You cannot change the definition of an existing view. Oracle SQL offers an ALTER VIEW command, but
you can use that command only to recompile views that became invalid. You can drop a view definition
only, with the DROP VIEW command.

The DROP VIEW command is very straightforward, and doesn’t need additional explanation:

SQL> drop view <view_name>;

Alternatively, you can replace the definition of an existing view with the CREATE OR REPLACE VIEW

command, as described earlier in this section.

10.3 What Can You Do with Views?
You can use views for many different purposes. This section lists and explains the most important ones:
to simplify database retrieval, to maintain logical data independence, and to implement data security.

Simplifying Data Retrieval
Views can simplify database retrieval significantly. You can build up (and test) complex queries step by
step, for more control over the correctness of your queries. In other words, you will be more confident
that your queries return the right results.

You can also store (hide) frequently recurring standard queries in a view definition, thus reducing
the number of unnecessary mistakes. For example, you might define views based on frequently joined
tables, UNION constructs, or complex GROUP BY statements.

Suppose we are interested in an overview showing all employees who have attended more course
days than the average employee. This is not a trivial query, so let’s tackle it in multiple phases. As a first
step toward the final solution, we ask the question, “How many course days did everyone attend?” The
query in Listing 10-7 provides the answer.

271

CHAPTER 10 � VIEWS

Listing 10-7. Working Toward a Solution: Step 1

SQL> select e.empno
 2 , e.ename
 3 , sum(c.duration) as days
 4 from registrations r
 5 join courses c on (c.code = r.course)
 6 join employees e on (e.empno = r.attendee)
 7 group by e.empno
 8 , e.ename;

 EMPNO ENAME DAYS
-------- -------- --------
 7900 JONES 3
 7499 ALLEN 11
 7521 WARD 1
 7566 JONES 5
 7698 BLAKE 12
 7782 CLARK 4
 7788 SCOTT 12
 7839 KING 8
 7844 TURNER 1
 7876 ADAMS 9
 7902 FORD 9
 7934 MILLER 4

12 rows selected.

SQL>

This is not the solution to our problem yet, but it is already quite complicated. We have a join and a

GROUP BY clause over a combination of two columns. If the result in Listing 10-7 were a real table, our
original problem would be much easier to solve. Well, we can simulate that situation by defining a view.
So we add one extra line to the query in Listing 10-7, as shown in Listing 10-8.

Listing 10-8. Working Toward a Solution: Step 2

SQL> create or replace view course_days as
 2 select e.empno
 3 , e.ename
 4 , sum(c.duration) as days
 5 from registrations r
 6 join courses c on (c.code = r.course)
 7 join employees e on (e.empno = r.attendee)
 8 group by e.empno
 9 , e.ename;

View created.

272

 CHAPTER 10 � VIEWS

SQL> select *
 2 from course_days
 3 where days > 10;

 EMPNO ENAME DAYS
-------- -------- --------
 7499 ALLEN 11
 7698 BLAKE 12
 7788 SCOTT 12

SQL>

Now, the original problem is rather easy to solve. Listing 10-9 shows the solution.

Listing 10-9. Working Toward a Solution: The Final Step

SQL> select *
 2 from course_days
 3 where days > (select avg(days)
 4 from course_days);

 EMPNO ENAME DAYS
-------- -------- --------
 7499 ALLEN 11
 7698 BLAKE 12
 7788 SCOTT 12
 7839 KING 8
 7876 ADAMS 9
 7902 FORD 9

SQL>

Of course, you could argue that you could solve this query directly against the two base tables, but it

is easy to make a little mistake. Moreover, your solution will probably be difficult to interpret. We could
have used an inline view as well, or we could have separated the query in Listing 10-7 into a WITH clause,
as described in Section 9.4 of Chapter 9. Inline views and subquery factoring (using the WITH clause) are
good alternatives if you don’t have the right system privileges to create views. A big advantage of using
views, compared with inline views and subquery factoring, is the fact that view definitions are persistent;
that is, you might benefit from the same view for more than one problem. Views occupy very little space
(the DBMS stores the query text only), and there is no redundancy at all.

Maintaining Logical Data Independence
You can use views to change the (logical) external interface of the database, as exposed to database users
and applications, without the need to change the underlying database structures themselves. In other
words, you can use views to implement logical data independency. For example, different database users
can have different views on the same base tables. You can rearrange columns, filter on rows, change
table and column names, and so on.

Distributed databases often use views (or synonyms) to implement logical data independency and
hide complexity. For example, you can define (and store) a view as a “local” database object. Behind the

273

CHAPTER 10 � VIEWS

scenes, the view query accesses data from other databases on the network, but this is completely
transparent to database users and applications.

You can also provide derivable information via views; that is, you implement redundancy at the
logical level. The COURSE_DAYS view we created in Listing 10-8 is an example, because that view derives
the number of course days.

Implementing Data Security
Last, but not least, views are a powerful means to implement data security. Views allow you to hide
certain data from database users and applications. The view query precisely determines which rows and
columns are exposed via the view. By using the GRANT and REVOKE commands on your views, you specify
in detail which actions against the view data are allowed. In this approach, you don’t grant any privileges
at all on the underlying base tables, since you obviously don’t want database users or applications to
bypass the views and access the base tables directly.

10.4 Data Manipulation via Views
As you’ve learned in this chapter, views are virtual tables, and they are supposed to behave like tables as
much as possible. For retrieval, that’s no problem. However, data manipulation via views is not always
possible. A view is theoretically updatable if the DML command against the view can be unambiguously
decomposed into corresponding DML commands against rows and columns of the underlying base
tables.

Let’s consider the three views created in Listings 10-10 and 10-11.

Listing 10-10. CRS_OFFERINGS View, Based on a Join

SQL> create or replace view crs_offerings as
 2 select o.course as course_code, c.description, o.begindate
 3 from offerings o
 4 join
 5 courses c
 6 on (o.course = c.code);

View created.

SQL>

Listing 10-11. Simple EMP View and Aggregate AVG_EVALUATIONS View

SQL> create or replace view emp as
 2 select empno, ename, init
 3 from employees;

View created.

SQL> create or replace view avg_evaluations as
 2 select course
 3 , avg(evaluation) as avg_eval

274

 CHAPTER 10 � VIEWS

 4 from registrations
 5 group by course;

View created.

SQL>

First, let’s look at the most simple view: the EMP view. The Oracle DBMS should be able to delete

rows from the EMPLOYEES table via this view, or to change any of the three column values exposed by the
view. However, inserting new rows via this view is impossible, because the EMPLOYEES table has NOT NULL
columns without a default value (such as the date of birth) outside the scope of the EMP view. See Listing
10-12 for some DML experiments against the EMP view.

Listing 10-12. Testing DML Commands Against the EMP View

SQL> delete from emp
 2 where empno = 7654;

1 row deleted.

SQL> update emp
 2 set ename = 'BLACK'
 3 where empno = 7698;

1 row updated.

SQL> insert into emp
 2 values (7999,'NEWGUY','NN');
insert into e
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("BOOK"."EMPLOYEES"."BDATE")

SQL> rollback;
Rollback complete.

SQL>

Note that the ORA-01400 error message in Listing 10-12 actually reveals several facts about the

underlying (and supposedly hidden) table:

� The schema name (BOOK)

� The table name (EMPLOYEES)

� The presence of a mandatory BDATE column

Before you think you’ve discovered a security breach in the Oracle DBMS, I should explain that you
get this informative error message only because you are testing the EMP view while connected as BOOK. If
you are connected as a different database user with INSERT privilege against the EMP view only, the error
message becomes as follows:

ORA-01400: cannot insert NULL into (???)

275

CHAPTER 10 � VIEWS

Updatable Join Views
The CRS_OFFERINGS view (see Listing 10-10) is based on a join of two tables: OFFERINGS and COURSES.
Nevertheless, you are able to perform some data manipulation via this view, as long as the data
manipulation can be translated into corresponding actions against the two underlying base tables.
CRS_OFFERINGS is an example of an updatable join view. The Oracle DBMS is getting closer and closer to
the full implementation of Ted Codd’s rule 6 (see Chapter 1). Listing 10-13 demonstrates testing some
DML commands against this view.

Listing 10-13. Testing DML Commands Against the CRS_OFFERINGS View

SQL> delete from crs_offerings where course_code = 'ERM';

1 row deleted.

SQL> insert into crs_offerings (course_code, begindate)
 2 values ('OAU' , trunc(sysdate));

1 row created.

SQL> rollback;
Rollback complete.

SQL>

There are some rules and restrictions that apply to updatable join views. Also, the concept of key-

preserved tables plays an important role in this area. As the name indicates, a key-preserved table is an
underlying base table with a one-to-one row relationship with the rows in the view, via the primary key
or a unique key.

These are some examples of updatable join view restrictions:

� You are allowed to issue DML commands against updatable join views only if you
change a single underlying base table.

� For INSERT statements, all columns into which values are inserted must belong to
a key-preserved table.

� For UPDATE statements, all columns updated must belong to a key-preserved table.

� For DELETE statements, if the join results in more than one key-preserved table, the
Oracle DBMS deletes from the first table named in the FROM clause.

� If you created the view using WITH CHECK OPTION, some additional DML restrictions
apply, as explained a little later in this section.

As you can see in Listing 10-13, the DELETE and INSERT statements against the CRS_OFFERINGS
updatable join view succeed. Feel free to experiment with other data manipulation commands. The
Oracle error messages are self-explanatory if you hit one of the restrictions:

ORA-01732: data manipulation operation not legal on this view
ORA-01752: cannot delete from view without exactly one key-preserved table
ORA-01779: cannot modify a column which maps to a non key-preserved table

276

 CHAPTER 10 � VIEWS

Nonupdatable Views
First of all, if you create a view with the WITH READ ONLY option (see Figure 10-1), data manipulation via
that view is impossible by definition, regardless of how you defined the view.

The AVG_EVALUATIONS view definition (see Listing 10-11) contains a GROUP BY clause. This implies that
there is no longer a one-to-one relationship between the rows of the view and the rows of the underlying
base table. Therefore, data manipulation via the AVG_EVALUATIONS view is impossible.

If you use SELECT DISTINCT in your view definition, this has the same effect: it makes your view
nonupdatable. You should try to avoid using SELECT DISTINCT in view definitions, because it has
additional disadvantages; for example, each view access will force a sort to take place, whether or not
you need it.

The set operators UNION, MINUS, and INTERSECT also result in nonupdatable views. For example,
imagine that you are trying to insert a row via a view based on a UNION—in which underlying base table
should the DBMS insert that row?

The Oracle documentation provides all of the details and rules with regard to view updatability.
Most rules and exceptions are rather straightforward, and as noted earlier, most Oracle error messages
clearly indicate the reason why certain data manipulation commands are forbidden.

The data dictionary offers a helpful view to find out which of your view columns are updatable: the
USER_UPDATABLE_COLUMNS view. For example, Listing 10-14 shows that you cannot do much with the
DESCRIPTION column of the CRS_OFFERINGS view. This is because it is based on a column from the COURSES
table, which is a not a key-preserved table in this view.

Listing 10-14. View Column Updatability Information from the Data Dictionary

SQL> select column_name
 2 , updatable, insertable, deletable
 3 from user_updatable_columns
 4 where table_name = 'CRS_OFFERINGS';

COLUMN_NAME UPD INS DEL
-------------------- --- --- ---
COURSE_CODE YES YES YES
DESCRIPTION NO NO NO
BEGINDATE YES YES YES

SQL>

277

CHAPTER 10 � VIEWS

Making a View Updatable with Instead-of Triggers

In a chapter about views, it’s worth mentioning that PL/SQL (the standard procedural programming
language for Oracle databases) provides a way to make any view updatable. With PL/SQL, you can define
instead-of triggers on your views. These triggers take over control as soon as any data manipulation
commands are executed against the view.

This means that you can make any view updatable, if you choose, by writing some procedural PL/SQL
code. Obviously, it is your sole responsibility to make sure that those instead-of triggers do the “right
things” to your database to maintain data consistency and integrity. Instead-of triggers should not be your
first thought to solve data manipulation issues with views. However, they may solve your problems in some
special cases, or they may allow you to implement a very specific application behavior.

The WITH CHECK OPTION Clause
If data manipulation is allowed via a certain view, there are two rather curious situations that deserve
attention:

� You change rows with an UPDATE command against the view, and then the rows
don’t show up in the view anymore.

� You add rows with an INSERT command against the view; however, the rows don’t
show up when you query the view.

Disappearing Updated Rows
Do you still have the DEPT20_V view, created in Listing 10-1? Check out what happens in Listing 10-15: by
updating four rows, they disappear from the view.

Listing 10-15. UPDATE Makes Rows Disappear

SQL> select * from dept20_v;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

SQL> update dept20_v
 2 set deptno = 30
 3 where job ='TRAINER';

4 rows updated.

278

 CHAPTER 10 � VIEWS

SQL> select * from dept20_v;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

SQL> rollback;
Rollback complete.

SQL>

Apparently, the updates in Listing 10-15 are propagated to the underlying EMPLOYEES table. All

trainers from department 20 don’t show up anymore in the DEPT20_V view, because their DEPTNO column
value is changed from 20 to 30.

Inserting Invisible Rows
The second curious scenario is shown in Listing 10-16. You insert a new row for employee 9999, and you
get the message “1 row created.” However, the new employee does not show up in the query.

Listing 10-16. INSERT Rows Without Seeing Them in the View

SQL> insert into dept20_v
 2 values (9999,'BOS','D', null, null
 3 , date '1939-01-01'
 4 , '10', null, 30);

1 row created.

SQL> select * from dept20_v;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

5 rows selected.

SQL> rollback;
Rollback complete.

SQL>

Listing 10-16 shows that you can insert a new employee via the DEPT20_V view into the underlying

EMPLOYEES table, without the new row showing up in the view itself.

279

CHAPTER 10 � VIEWS

Preventing These Two Scenarios
If the view behavior just described is undesirable, you can create your views with the WITH CHECK OPTION
clause (see Figure 10-1). Actually, the syntax diagram in Figure 10-1 is not complete. You can assign a
name to WITH CHECK OPTION constraints, as follows:

SQL> create [or replace] view ... with check option constraint <cons-name>;

If you don’t provide a constraint name, the Oracle DBMS generates a rather cryptic one for you.
Listing 10-17 replaces the DEPT20_V view, using WITH CHECK OPTION, and shows that the INSERT

statement that succeeded in Listing 10-16 now fails with an Oracle error message.

Listing 10-17. Creating Views WITH CHECK OPTION

SQL> create or replace view dept20_v as
 2 select * from employees where deptno = 20
 3 with check option constraint dept20_v_check;

View created.

SQL> insert into dept20_v
 2 values (9999,'BOS','D', null, null
 3 , date '1939-01-01'
 4 , '10', null, 30);
 , '10', null, 30)
 *
ERROR at line 4:
ORA-01402: view WITH CHECK OPTION where-clause violation

SQL>

Constraint Checking
In the old days, when the Oracle DBMS didn’t yet support referential integrity constraints (which is a
long time ago, before Oracle7), you were still able to implement certain integrity constraints by using
WITH CHECK OPTION when creating views. For example, you could use subqueries in the view definition to
check for row existence in other tables. Listing 10-18 gives an example of such a view. Nowadays, you
don’t need this technique anymore, of course.

Listing 10-18. WITH CHECK OPTION and Constraint Checking

SQL> create or replace view reg_view as
 2 select r.*
 3 from registrations r
 4 where r.attendee in (select empno
 5 from employees)
 6 and r.course in (select code
 7 from courses)

280

 CHAPTER 10 � VIEWS

 8 and r.evaluation in (1,2,3,4,5)
 9 with check option;

View created.

SQL> select constraint_name, table_name
 2 from user_constraints
 3 where constraint_type = 'V';

CONSTRAINT_NAME TABLE_NAME
-------------------- --------------------
SYS_C005979 REG_VIEW
DEPT20_V_CHECK DEPT20_V

SQL>

Via the REG_VIEW view, you can insert registrations only for an existing employee and an existing

course. Moreover, the EVALUATION value must be an integer between 1 and 5, or a null value. Any data
manipulation command against the REG_VIEW view that violates one of the above three checks will result
in an Oracle error message. CHECK OPTION constraints show up in the data dictionary with a
CONSTRAINT_TYPE value V; notice the system generated constraint name for the REG_VIEW view.

10.5 Data Manipulation via Inline Views
Inline views are subqueries assuming the role of a table expression in SQL commands. In other words,
you specify a subquery (between parentheses) in places where you would normally specify a table or
view name. We already discussed inline views in the previous chapter, but we considered inline views
only in the FROM component of queries.

You can also use inline views for data manipulation purposes. Data manipulation via inline views is
especially interesting in combination with updatable join views. Listing 10-19 shows an example of an
UPDATE command against an inline updatable join view.

Listing 10-19. UPDATE via an Inline Updatable Join View

SQL> update (select e.msal
 2 from employees e join
 3 departments d using (deptno)
 4 where location = 'DALLAS')
 5 set msal = msal + 1;

5 rows updated.

SQL> rollback;
Rollback complete.

SQL>

Listing 10-19 shows that you can execute UPDATE commands via an inline join view, giving all

employees in Dallas a symbolic salary raise. Note that the UPDATE command does not contain a WHERE

281

CHAPTER 10 � VIEWS

clause at all; the inline view filters the rows to be updated. This filtering would be rather complicated to
achieve in a regular UPDATE command against the EMPLOYEES table. For that, you probably would need a
correlated subquery in the WHERE clause.

At first sight, it may seem strange to perform data manipulation via inline views (or subqueries), but
the number of possibilities is almost unlimited. The syntax is elegant and readable, and the response
time is at least the same (if not better) compared with the corresponding commands against the
underlying base tables. Obviously, all restrictions regarding data manipulation via updatable join views
(as discussed earlier in this section) still apply.

10.6 Views and Performance
Normally, the Oracle DBMS processes queries against views in the following way:

1. The DBMS notices that views are involved in the query entered.

2. The DBMS retrieves the view definition from the data dictionary.

3. The DBMS merges the view definition with the query entered.

4. The optimizer chooses an appropriate execution plan for the result of the
previous step: a command against base tables.

5. The DBMS executes the plan from the previous step.

In exceptional cases, the Oracle DBMS may decide to execute the view query from the data
dictionary, populate a temporary table with the results, and then use the temporary table as a base table
for the query entered. This happens only if the Oracle DBMS is not able to merge the view definition with
the query entered, or if the Oracle optimizer determines that using a temporary table is a good idea.

In the regular approach, as outlined in the preceding five steps, steps 2 and 3 are the only additional
overhead. One of the main advantages of this approach is that you can benefit optimally from indexes on
the underlying base tables.

For example, suppose you enter the following query against the AVG_EVALUATIONS view:

SQL> select *
 2 from avg_evaluations
 3 where avg_eval >= 4

This query is transformed internally into the statement shown in Listing 10-20. Notice that the WHERE

clause is translated into a HAVING clause, and the asterisk (*) in the SELECT clause is expanded to the
appropriate list of column expressions.

Listing 10-20. Rewritten Query Against the REGISTRATIONS Table

SQL> select r.course
 2 , avg(r.evaluation) as avg_eval
 3 from registrations r
 4 group by r.course
 5 having avg(r.evaluation) >= 4;

282

 CHAPTER 10 � VIEWS

COURSE AVG_EVAL
------ --------
JAV 4.125
OAU 4.5
XML 4.5

SQL>

Especially when dealing with larger tables, the performance overhead of using views is normally

negligible. If you start defining views on views on views, the performance overhead may become more
significant. And, in case you don’t trust the performance overhead, you can always use diagnostic tools
such as SQL *Plus or SQL Developer AUTOTRACE (see Chapter 7, Section 7.6) to check execution plans and
statistics.

10.7 Materialized Views
A brief introduction of materialized views makes sense in this chapter about views. The intent of this
section is to illustrate the concept of materialized views, using a simple example.

Normally, materialized views are mainly used in complex data warehousing environments, where
the tables grow so big that the data volume causes unacceptable performance problems. An important
property of data warehousing environments is that you don’t change the data very often. Typically, there
is a separate Extraction, Transformation, Loading (ETL) process that updates the data warehouse
contents.

Materialized views are also often used with distributed databases. In such environments, accessing
data over the network can become a performance bottleneck. You can use materialized views to
replicate data in a distributed database.

To explore materialized views, let’s revisit Listing 10-1 and add a third DDL command, as shown in
Listing 10-21.

Listing 10-21. Comparing Views, Tables, and Materialized Views

SQL> create or replace VIEW dept20_v as
 2 select * from employees where deptno = 20;

View created.

SQL> create TABLE dept20_t as
 2 select * from employees where deptno = 20;

Table created.

SQL> create MATERIALIZED VIEW dept20_mv enable query rewrite as
 2 select * from employees where deptno = 20;

Materialized view created.

SQL>

283

CHAPTER 10 � VIEWS

You already know the difference between a table and a view, but what is a materialized view? Well,
as the name suggests, it’s a view for which you store both its definition and the query results. In other
words, a materialized view has its own rows. Materialized views imply redundant data storage.

The materialized view DEPT20_MV now contains all employees of department 20, and you can execute
queries directly against DEPT20_MV, if you like. However, that’s not the main purpose of creating
materialized views, as you will learn from the remainder of this section.

Properties of Materialized Views
Materialized views have two important properties, in the areas of maintenance and usage:

� Maintenance: Materialized views are “snapshots.” That is, they have a certain
content at any point in time, based on “refreshment” from the underlying base
tables. This implies that the contents of materialized views are not necessarily up-
to-date all the time, because the underlying base tables can change. Fortunately,
the Oracle DBMS offers various features to automate the refreshment of your
materialized views completely, in an efficient way. In other words, yes, you have
redundancy, but you can easily set up appropriate redundancy control.

� Usage: The Oracle optimizer (the component of the Oracle DBMS deciding about
execution plans for SQL commands) is aware of the existence of materialized
views. The optimizer also knows whether materialized views are up-to-date or
stale. The optimizer can use this knowledge to replace queries written against
regular base tables with corresponding queries against materialized views, if the
optimizer thinks that approach may result in better response times. This is
referred to as the query rewrite feature, which is explained in the next section.

� Note When you create materialized views, you normally specify whether you want to enable query rewrite, and
how you want the Oracle DBMS to handle the refreshing of the materialized view. Those syntax details are used in
Listing 10-21 but further usage information is omitted here. See Oracle SQL Reference for more information.

Query Rewrite
Let’s continue with our simple materialized view, created in Listing 10-21. Assume you enter the
following query, selecting all trainers from department 20:

SQL> select * from employees where deptno = 20 and job = 'TRAINER'

For this query, the optimizer may decide to execute the following query instead:

SQL> select * from dept20_mv where job = 'TRAINER'

In other words, the original query against the EMPLOYEES table is rewritten against the DEPT20_MV

materialized view. Because the materialized view contains fewer rows than the EMPLOYEES table (and

284

 CHAPTER 10 � VIEWS

therefore fewer rows need to be scanned), the optimizer thinks it is a better starting point to produce the
desired end result. Listing 10-22 shows query rewrite at work, using the SQL*Plus AUTOTRACE feature.

Listing 10-22. Materialized Views and Query Rewrite at Work

SQL> set autotrace on explain
SQL> select * from employees where deptno = 20 and job = 'TRAINER';

 EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ----- ----------- ----- ----- ------
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

Execution Plan
--
Plan hash value: 2578977254

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 4 | 360 | 3 (0)| 00:00:01 |
|* 1 | MAT_VIEW REWRITE ACCESS FULL| DEPT20_MV | 4 | 360 | 3 (0)| 00:00:01 |
--

Predicate Information (identified by operation id):

 1 - filter("DEPT20_MV"."JOB"='TRAINER')

SQL>

Although it is obvious from Listing 10-22 that you write a query against the EMPLOYEES table, the

execution plan (produced with AUTOTRACE ON EXPLAIN) shows that the materialized view DEPT20_MV is
accessed instead.

Materialized views normally provide better response times; however, there is a risk that the results
are based on stale data because the materialized views are out of sync with the underlying base tables.
You can specify whether you tolerate query rewrites in such cases, thus controlling the behavior of the
optimizer. If you want precise results, the optimizer considers query rewrite only when the materialized
views are guaranteed to be up-to-date.

Obviously, the materialized view example we used in this section is much too simple. Normally, you
create materialized views with relatively “expensive” operations, such as aggregation (GROUP BY), joins
over multiple tables, and set operators (UNION, MINUS, and INTERSECT)—operations that are too time-
consuming to be repeated over and over again. For more details and examples of materialized views, see
Data Warehousing Guide.

285

CHAPTER 10 � VIEWS

286

10.8 Exercises
As in the previous chapters, we end this chapter with some practical exercises. See Appendix D for the
answers.

1. Look at the example discussed in Listings 10-7, 10-8, and 10-9. Rewrite the
query in Listing 10-9 without using a view, by using the WITH operator.

2. Look at Listing 10-12. How is it possible that you can delete employee 7654 via
this EMP view? There are rows in the HISTORY table, referring to that employee
via a foreign key constraint.

3. Look at the view definition in Listing 10-18. Does this view implement the
foreign key constraints from the REGISTRATIONS table to the EMPLOYEES and
COURSES tables? Explain your answer.

4. Create a SAL_HISTORY view providing the following overview for all employees,
based on the HISTORY table: For each employee, show the hire date, the review
dates, and the salary changes as a consequence of those reviews. Check your
view against the following result:

SQL> select * from sal_history;

EMPNO HIREDATE REVIEWDATE SALARY_RAISE
----- ----------- ----------- ------------
 7369 01-JAN-2000 01-JAN-2000
 7369 01-JAN-2000 01-FEB-2000 -150
 7499 01-JUN-1988 01-JUN-1988
 7499 01-JUN-1988 01-JUL-1989 300
 7499 01-JUN-1988 01-DEC-1993 200
 7499 01-JUN-1988 01-OCT-1995 200
 7499 01-JUN-1988 01-NOV-1999 -100
 ...
 7934 01-FEB-1998 01-FEB-1998
 7934 01-FEB-1998 01-MAY-1998 5
 7934 01-FEB-1998 01-FEB-1999 10
 7934 01-FEB-1998 01-JAN-2000 10

79 rows selected.

SQL>

C H A P T E R 11

� � �

Writing and Automating
SQL*Plus Scripts

Chapter 2 introduced SQL Developer and SQL*Plus. In that chapter, we focused on the most essential
commands required to get started with SQL, such as the SQL*Plus editor commands (LIST, INPUT, CHANGE,
APPEND, DEL, and EDIT), file management (SAVE, GET, START, and SPOOL), and other commands (HOST,
DESCRIBE, and HELP).

� Note SQL*Plus is the oldest Oracle tool still available. It was renamed from UFI (User Friendly Interface) in
version 4 to SQL*Plus in Version 5 in the mid 1980s.

This chapter covers some more advanced features of SQL*Plus for reporting, as well as some more
advanced uses of SQL*Plus for creating scripts for automation. Knowing how to use these features will
enhance your skills in using these tools, thus increasing your satisfaction and productivity.

The first section (11.1) introduces the various variable types supported by SQL*Plus: substitution
variables, user variables, and system variables. When dealing with SQL*Plus variables, the most
important commands are SET, SHOW, DEFINE, and ACCEPT.

The second section (11.2) explains SQL bind variables. These bind variables are crucial when
developing mission-critical database applications, if high performance and scalability are important
goals.

The third section (11.3) introduces the concept of SQL*Plus scripts, how they are created, how they
are edited, and how they are executed.

In the previous chapters, you have used SQL*Plus in an interactive way—you enter the commands,
press the Enter key, and wait for the results to appear on your screen. Section 11.3 shows that you can
also use SQL*Plus to make program modules by using script files, or simply to store something useful for
repeated use.

In Section 11.4, you will see how you can use SQL*Plus as a reporting tool by enhancing the layout of
the results with SQL*Plus commands such as the TTITLE, BTITLE, COLUMN, BREAK, and COMPUTE commands.
You’ll also learn how to use SQL*Plus as a batch programming environment for both retrieving
information from the calling environment and passing information back.

Section 11.5 focuses on various ways you can use SQL*Plus as a database tool in an HTML (browser)
environment.

The next section (11.6) returns to the topic of SQL*Plus scripts, showing how a script can accept
parameters from a calling program, handle error conditions, pass data from one SQL statement to

287

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

another, and finally return an appropriate exit status to the calling program. This is useful for
automating any special operations that your application or database require.

� Note For obvious reasons, listings in this chapter are all taken directly from SQL*Plus. They show the typical
artifacts such as command-prompts and substitution-prompts that you’ll encounter during a SQL*Plus session.

11.1 SQL*Plus Variables
SQL*Plus supports the following three variable types:

� Substitution variables

� User-defined variables

� System variables

SQL*Plus Substitution Variables
Substitution variables appear in SQL or SQL*Plus commands. SQL*Plus prompts for a value when you
execute those commands. We have used substitution variables in earlier examples in this book (Listing
5-14, for example, to test certain commands multiple times with different literal values.

Substitution variable values are volatile; that is, SQL*Plus doesn’t remember them and doesn’t store
them anywhere. This is what distinguishes substitution variables from the other two types. If you
execute the same SQL or SQL*Plus command again, SQL*Plus prompts for a value again. The default
character that makes SQL*Plus prompt for a substitution variable value is the ampersand (&), also known
as the DEFINE character. Check out what happens in Listing 11-1.

Listing 11-1. Using the DEFINE Character (&)

SQL> select * from departments
 2 where dname like upper('%&letter%');

Enter value for letter: a
old 2: where dname like upper('%&letter%')
new 2: where dname like upper('%a%')

 DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698

SQL>

288

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Actually, if a substitution variable occurs twice within a single command, SQL*Plus also prompts
twice for a value, as demonstrated in Listing 11-2.

Listing 11-2. Prompting Twice for the Same Variable

SQL> select ename from employees
 2 where empno between &x and &x+100;

Enter value for x: 7500
Enter value for x: 7500
old 2: where empno between &x and &x+100
new 2: where empno between 7500 and 7500+100

ENAME

WARD
JONES

SQL>

You can use the period character (.) to mark the end of the name of a substitution variable, as

shown in Listing 11-3. The period (.) is also known as the CONCAT character in SQL*Plus.
Normally, you don’t need the CONCAT character very often, because white space is good enough to

delimit variable names; however, white space in strings can sometimes be undesirable. See Listing 11-3
for an example.

Listing 11-3. Using the DEFINE and CONCAT Characters

SQL> select '&drink.glass' as result from dual;

Enter value for drink: beer
old 1: select '&drink.glass' as result from dual
new 1: select 'beerglass' as result from dual

RESULT

beerglass

SQL>

Note that you can display the current settings of the DEFINE and CONCAT characters with the SQL*Plus

SHOW command, and you can change these settings with the SQL*Plus SET command, as shown in Listing
11-4.

289

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Listing 11-4. Displaying the DEFINE and CONCAT Character Settings

SQL> show define
define "&" (hex 26)

SQL> show concat
concat "." (hex 2e)

SQL>

If you don’t want SQL*Plus to display the explicit replacement of substitution variables by the values

you entered (as in Listings 11-1, 11-2, and 11-3), you can suppress that with the SQL*Plus VERIFY setting,
as shown in Listing 11-5.

Listing 11-5. Switching the VERIFY Setting ON and OFF

SQL> set verify on
SQL> set verify off
SQL> show verify
verify OFF

SQL>

If you change the VERIFY setting to OFF, as shown in Listing 11-5, and you execute the SQL command

(still in the SQL buffer) with the SQL*Plus RUN command, you don’t see the “old: ...” and “new: ...”
lines anymore, as shown in Listing 11-6.

Listing 11-6. The Effect of VERIFY OFF

SQL> select ename from employees
 2 where empno between &x and &x+100;

Enter value for x: 7500
Enter value for x: 7500

ENAME

WARD
JONES

SQL>

SQL*Plus User-Defined Variables
If you want to store the value of a SQL*Plus variable (at least temporarily) so you can use it multiple
times, you need the next category of SQL*Plus variables: user-defined variables.

You can use the SQL*Plus DEFINE command to declare user-defined variables and to assign values to
them, as shown in Listing 11-7.

290

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Listing 11-7. Assigning Values to User-Defined Variables with DEFINE

SQL> define x=7500

SQL> select ename from employees
 2 where empno between &x and &x+100;

ENAME

WARD
JONES

SQL>

The DEFINE command in Listing 11-7 stores the user-defined variable X with its value 7500. That’s

why SQL*Plus doesn’t prompt for a value for X anymore in Listing 11-7.
The SQL*Plus DEFINE command not only allows you to assign values to user-defined variables, but

also to display current values. Using the DEFINE command, you can display the value of a specific
variable. You can also display a complete listing of all user-defined variables by not specifying a variable
name and just entering the DEFINE command itself. The SQL*Plus UNDEFINE command allows you to
remove a user-defined variable. Listing 11-8 shows examples of DEFINE and UNDEFINE.

Listing 11-8. DEFINE and UNDEFINE Examples

SQL> def x
DEFINE X = "7500" (CHAR)

SQL> def
DEFINE _DATE = "25-SEP-2004" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "orcl" (CHAR)
DEFINE _USER = "BOOK" (CHAR)
DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1001000200" (CHAR)
DEFINE _EDITOR = "vim" (CHAR)
DEFINE _O_VERSION = "Oracle Database 10g Enterprise Edition
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options" (CHAR)
DEFINE _O_RELEASE = "1001000200" (CHAR)
DEFINE X = "7500" (CHAR)

SQL> undefine x
SQL>

Implicit SQL*Plus User-Defined Variables
SQL*Plus also supports syntax allowing you to define variables implicitly. With this method, you start
with substitution variables in your SQL and SQL*Plus commands, and you end up with user-defined
variables; SQL*Plus prompts for a value only once. You can implement this behavior by using double

291

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

ampersands (&&). Look at the experiments in Listing 11-9, showing that you start out without an ENR
variable, you are prompted for a value only once, and then an implicit DEFINE is executed.

Listing 11-9. Using Double Ampersands (&&)

SQL> define enr
SP2-0135: symbol enr is UNDEFINED

SQL> select * from employees
 2 where empno between &&enr and &enr+100;

Enter value for enr: 7500

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

SQL> define enr
DEFINE ENR = "7500" (CHAR)
SQL>

If you now re-execute the contents of the SQL buffer (with / or RUN), there is no prompting at all; the

stored ENR value (7500) is used. So if you use this technique, make sure to end (or start) your scripts with
the appropriate UNDEFINE commands.

User-Friendly Prompting
SQL*Plus provides a more user-friendly method to create user-defined variables and prompt for values,
while offering some more control over the values as well. This method is especially useful with SQL*Plus
scripts (discussed in Section 11.3). User-friendly prompting uses a combination of the three SQL*Plus
commands: PROMPT, PAUSE, and ACCEPT. Listing 11-10 shows an example.

Note that you can split a SQL*Plus command over multiple lines, as shown in Listing 11-10 in the
ACCEPT command example. Normally, the newline character is a SQL*Plus command delimiter, but you
can “escape” from that special meaning of the newline character by ending your command lines with a
minus sign (-).

Listing 11-10. Using PROMPT, PAUSE, and ACCEPT

SQL> prompt This is a demonstration.
This is a demonstration.

SQL> pause Hit the [Enter] key...
Hit the [Enter] key...

SQL> accept x number -
> prompt "Please enter a value for x: "
Please enter a value for x: 42

292

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

SQL> define x
DEFINE X = 42 (NUMBER)
SQL>

The PROMPT command allows you to write text to the screen, the PAUSE command allows you to

suspend script execution, and the ACCEPT command gives you full control over the datatype of the user-
defined variable and the screen text prompting for a value. Just try to enter a nonnumeric value for
variable X in Listing 11-10. You will get the following SQL*Plus error message:

Enter a value for x: monkey
SP2-0425: "monkey" is not a valid NUMBER

� Caution Splitting commands over multiple lines by using the minus sign as an escape character is relevant
only for SQL*Plus commands, not for SQL commands.

SQL*Plus System Variables
The third category of SQL*Plus variables is system variables. The values of these system-defined
SQL*Plus variables control the overall behavior of SQL*Plus. You already saw various examples of these
system variables, such as PAGESIZE and PAUSE, in Chapter 2.

In the previous section, you learned that you need the SQL*Plus commands DEFINE and UNDEFINE to
manage user-defined variables. For system variables, you need the SQL*Plus commands SET and SHOW to
assign or retrieve values, respectively.

Listing 11-11 shows some examples of system variables.

Listing 11-11. Some SQL*Plus System Variable Examples

SQL> show pagesize
pagesize 36

SQL> show pause
PAUSE is OFF

SQL> set pause '[Enter]... '
SQL> set pause on
SQL> set pagesize 10

SQL> select * from employees;
[Enter]...

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

293

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
 7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
 7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
[Enter]...

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7839 KING CC DIRECTOR 17-NOV-1952 5000 10
 7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
 7900 JONES R ADMIN 7698 03-DEC-1969 800 30
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20
 7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

14 rows selected.

SQL> set pause off pagesize 42
SQL> show all
...
SQL>

If you execute the last command of Listing 11-11 (SHOW ALL), you will see that the number of

SQL*Plus system variables is impressive. That’s why the output in Listing 11-11 is suppressed.
Table 11-1 shows an overview of the SQL*Plus system variables, listing only the most commonly

used SQL*Plus system variables. Where applicable, the third column shows the default values. In the first
column, the brackets indicate abbreviations you may want to use.

Table 11-1. Some Common SQL*Plus System Variables

Variable Description Default

COLSEP String to display between result columns “ ” (space)

CON[CAT] Character to mark the end of a variable name . (period)

DEF[INE] Character to refer to variable values & (ampersand)

ECHO Display or suppress commands (relevant only for scripts) OFF

FEED[BACK] Display “... rows selected” from a certain minimum result size 6

HEA[DING] Display column names above results ON

HEADS[EP] Divide column headers over multiple lines | (vertical bar)

LIN[ESIZE] Line or screen width, in characters 80

294

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

LONG Default width for LONG columns 80

NEWP[AGE] Number of empty lines after every page break 1

NULL Display of null values in the results

NUMF[ORMAT] Default format to display numbers

NUM[WIDTH] Default width for numeric columns 10

PAGE[SIZE] Number of lines per page 14

PAU[SE] Display results page by page, with pauses OFF

RELEASE Release or version of the RDBMS (cannot be set)

SQLP[ROMPT] SQL*Plus prompt string SQL>

SQLT[ERMINATOR] SQL command delimiter (execute the command) ; (semicolon)

TAB Show tab characters, else display as spaces ON

TIMI[NG] Show elapsed time after each command OFF

TRIMS[POOL] Suppress trailing spaces in spool files OFF

USER Username for the current SQL*Plus session (cannot be set)

VER[IFY] Show command lines before/after variable substitution ON

Let’s look at some experiments with SQL*Plus system variables, beginning with the FEEDBACK

variable. This variable is a switch (you can set it to ON or OFF) and also a threshold value, as shown in
Listing 11-12 where we set it to 4.

� Note In order to save some trees, the listings don’t repeat the query results each time. You can easily see the
effects of the various system variable values yourself.

295

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Listing 11-12. Using the FEEDBACK System Variable

SQL> select * from departments;

 DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698
 40 HR BOSTON 7839

SQL> set feedback 4
SQL> /

 DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698
 40 HR BOSTON 7839

4 rows selected. <<<

SQL> select * from employees;
...
SQL> set feedback off
SQL> show feedback
feedback OFF
SQL> /
...
SQL> set feedback 10
SQL>

Using COLSEP and NUMWIDTH, as shown in Listing 11-13, the default space separating the result

columns is replaced by a vertical line, and the GRADE and BONUS columns are now 10 columns wide.

Listing 11-13. Using the COLSEP and NUMWIDTH System Variables

SQL> select * from salgrades;

 GRADE LOWERLIMIT UPPERLIMIT BONUS
------ ---------- ---------- ------
 1 700 1200 0
 2 1201 1400 50
 3 1401 2000 100
 4 2001 3000 200
 5 3001 9999 500

SQL> set colsep " | "
SQL> set numwidth 10
SQL> /

296

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 GRADE | LOWERLIMIT | UPPERLIMIT | BONUS
---------- | ---------- | ---------- | ----------
 1 | 700 | 1200 | 0
 2 | 1201 | 1400 | 50
 3 | 1401 | 2000 | 100
 4 | 2001 | 3000 | 200
 5 | 3001 | 9999 | 500

SQL>

Listing 11-14 shows examples of using NULL and NUMFORMAT. The NULL system variable makes all null

values more visible. The NUMFORMAT variable allows you to influence the layout of all numeric columns. It
supports the same formats as the SQL*Plus COLUMN command (see Appendix A of this book or SQL*Plus
User’s Guide and Reference for details).

Listing 11-14. Using the NULL and NUMFORMAT System Variables

SQL> set numwidth 5
SQL> set null " [N/A]"

SQL> select ename, mgr, comm
 2 from employees
 3 where deptno = 10;

ENAME MGR COMM
-------- ------ ------
CLARK 7839 [N/A]
KING [N/A] [N/A]
MILLER 7782 [N/A]

SQL> set numformat 09999.99
SQL> select * from salgrades;

 GRADE LOWERLIMIT UPPERLIMIT BONUS
--------- ---------- ---------- ---------
 00001.00 00700.00 01200.00 00000.00
 00002.00 01201.00 01400.00 00050.00
 00003.00 01401.00 02000.00 00100.00
 00004.00 02001.00 03000.00 00200.00
 00005.00 03001.00 09999.00 00500.00

SQL>

As Listing 11-15 shows, you can use the DEFINE system variable as a switch (ON or OFF) and you can

also change the DEFINE character, if you need the ampersand character (&) without its special meaning.

297

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Listing 11-15. Using the DEFINE System Variable

SQL> select 'Miracle&Co' as result from dual;
Enter value for co: Breweries

RESULT

MiracleBreweries

SQL> set define off
SQL> run
 1* select 'Miracle&Co' as result from dual

RESULT

Miracle&Co

SQL> set define !
SQL> select 'Miracle&Co' as result from !table;
Enter value for table: dual

RESULT

Miracle&Co

SQL> set define &
SQL>

� Tip You have changed a lot of SQL*Plus settings in this section. In order to make a “clean” start, it is a good
idea to exit SQL*Plus and to start a new session. This will reset all SQL*Plus variables to their default values.

11.2 Bind Variables
The previous section discussed SQL*Plus variables, which are variables maintained by the tool SQL*Plus.
The SQL*Plus client-side program replaces all variables with actual values before the SQL commands are
sent to the Oracle DBMS.

This section discusses bind variables, an important component of the SQL language. To be more
precise, bind variables are a component of dynamic SQL, a PL/SQL interface that allows you to build and
process SQL statements at runtime. Bind variables are tool-independent.

Bind variables are extremely important if you want to develop database applications for critical
information systems. Suppose you have a database application to retrieve employee details. Application
users just enter an employee number in a field on their screen, and then click the Execute button. For
example, these SQL statements could be generated for two different database users, or for the same user
using the same application twice:

298

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

SQL> select * from employees where empno = 7566;
SQL> select * from employees where empno = 7900;

These two SQL statements are obviously different, and the Oracle DBMS will also treat them as

such. The optimizer will optimize them separately, and they will occupy their own memory structures
(cursors). This approach can easily flood your internal memory, and it also forces the optimizer to
produce execution plans over and over again. A much better approach would be to use a bind variable in
the SQL command, instead of the literal employee number, and to provide values for the bind variable
separately. In other words, all SQL commands coming from the application look like the following:

SQL> select * from employees where empno = :x;

Now, the Oracle DBMS is able to use cursor sharing, the optimizer can produce a single execution

plan, and the SQL command can be executed many times for different values of the bind variable.
SQL*Plus offers support for bind variables with the VARIABLE and PRINTcommands. You will also use

the SQL*Plus EXECUTE command, allowing you to execute a single PL/SQL statement.

Bind Variable Declaration
You can declare bind variables with the SQL*Plus VARIABLE command, and you can display bind variable
values with the SQL*Plus PRINT command. Because SQL doesn’t support any syntax to assign values to
bind variables, we use the SQL*Plus EXECUTE command to execute a single PL/SQL command from
SQL*Plus. Listing 11-16 shows examples of using these commands.

Listing 11-16. Declaring Bind Variables and Assigning Values

SQL> variable x number
SQL> variable y varchar2(8)

SQL> execute :x := 7566
PL/SQL procedure successfully completed.

SQL> execute :y := 'ADMIN'
PL/SQL procedure successfully completed.

SQL> print x y

 X

 7566

Y

ADMIN

SQL> variable
variable x
datatype NUMBER

variable y

299

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

datatype VARCHAR2(8)
SQL>

As you can see, we have created two variables, we have assigned values to them, and we can display

those values. Note that := is the assignment operator in PL/SQL.

Bind Variables in SQL Statements
Now let’s see whether we can retrieve the same two employees (7566 and 7900) using a bind variable.
See Listing 11-17.

Listing 11-17. Using Bind Variables in SQL Commands

SQL> select * from employees where empno = :x;

 EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ----- ----------- ------ ----- ------
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

SQL> execute :x := 7900
PL/SQL procedure successfully completed.

SQL> run
 1* select * from employees where empno = :x

 EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ----- ----------- ------ ----- ------
 7900 JONES R ADMIN 7698 03-DEC-1969 800 30

SQL>

Because EXECUTE is a SQL*Plus command, which means it is not stored in the SQL buffer, you can

assign a new value and re-execute the query from the SQL buffer with the RUN command. If you want to
see some evidence of the behavior of the Oracle DBMS, take a look at Listing 11-18.

Listing 11-18. Querying V$SQLAREA to See the Differences

SQL> select executions, sql_text
 2 from v$sqlarea
 3 where sql_text like 'select * from employees %';

EXECUTIONS SQL_TEXT
---------- --
 2 select * from employees where empno = :x
 1 select * from employees where empno = 7566
 1 select * from employees where empno = 7900

SQL>

300

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

For more details about bind variables, refer to PL/SQL User’s Guide and Reference.

11.3 SQL*Plus Scripts
In Chapter 2, you learned that you can save SQL commands with the SQL*Plus SAVE command. Until
now, we have written only single SQL commands from the SQL buffer to a file. However, you can also
create files with multiple SQL commands, optionally intermixed with SQL*Plus commands. This type of
file is referred to as a SQL*Plus script.

Script Execution
You can execute SQL*Plus scripts with the SQL*Plus START command, or with its shortcut @. Listings 11-
19 and 11-20 show examples of executing scripts.

Listing 11-19. Creating and Running SQL*Plus Scripts

SQL> select *
 2 from employees
 3 where deptno = &&dept_number
 4 and job = upper('&&job');
Enter value for dept_number: 10
Enter value for job: admin

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

SQL> save testscript replace
Wrote file testscript.sql

SQL> clear buffer
SQL> start testscript
...
SQL> @testscript
...
SQL>

Listing 11-20. Appending Commands to SQL*Plus Scripts

SQL> select *
 2 from departments
 3 where deptno = &dept_number;

 DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------
 10 ACCOUNTING NEW YORK 7782

SQL> save testscript append

301

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Appended file to testscript.sql

SQL> @testscript
...
SQL>

Listing 11-21 shows what happens if you use the GET command and you try to execute the script

from the SQL buffer. You get an Oracle error message, because the SQL buffer now contains multiple
SQL commands (as a consequence of your GET command), which is a situation SQL*Plus cannot handle.

Listing 11-21. What Happens If You Execute Scripts from the SQL Buffer

SQL> get testscript
 1 select *
 2 from employees
 3 where deptno = &&dept_number
 4 and job = upper('&&job')
 5 /
 6 select *
 7 from departments
 8* where deptno = &dept_number
SQL> /
select *
*
ERROR at line 6:
ORA-00936: missing expression

SQL>

The SQL*Plus START command (or @) actually reads a script file line-by-line, as if those lines were

entered interactively. At the end of the execution of a SQL*Plus script, you will see that only the SQL
statement executed last is still in the SQL buffer.

This is also the reason why the SQL*Plus SAVE command always adds a slash (/) after the end of the
contents of the SQL buffer. Check out what happens if you manually remove that slash, with an editor
like Notepad. The script will wait for further input from the keyboard, as if the command were not
finished yet.

By the way, you can also execute SQL*Plus scripts with a double at sign (@@) command. There is a
subtle difference between the @ and @@ commands, which is relevant only if you invoke SQL*Plus scripts
from other scripts. In such situations, @@ always searches for the (sub)script in the same folder (or
directory) where the main (or calling) script is stored. This makes the syntax to call subscripts fully
independent of any local environment settings, without the risk of launching wrong subscripts (with the
same name, from other locations) by accident.

Script Parameters
The next feature to explore is the ability to specify parameters (values for variables) when calling scripts.
You can specify up to nine command-line parameter values immediately after the SQL*Plus script name,
and you can refer to these values in your script with &1, &2, ..., &9. To test this feature, open

302

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

testscript.sql (the script you just generated in Listings 11-19 and 11-20) and make the changes shown
in Listing 11-22.

Listing 11-22. Contents of the Changed testscript.sql Script

select *
from employees
where deptno = &&1 -- this was &&dept_number
and job = upper('&2') -- this was &&job
/
select *
from departments
where deptno = &1 -- this was &dept_number
/
undefine 1 -- this line is added

Now you can call the script in two ways: with or without command-line arguments, as shown in

Listings 11-23 and 11-24.

Listing 11-23. Calling a Script Without Command-Line Arguments

SQL> @testscript
Enter value for 1: 10
Enter value for 2: manager

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----
 10 ACCOUNTING NEW YORK 7782

SQL>

As you can see in Listing 11-23, if you call the script without any arguments, SQL*Plus treats &1 and

$2 just like any other substitution or user-defined variables, and prompts for their values—as long as
earlier script executions didn’t leave any variables defined. That’s why we have added an UNDEFINE
command to the end of our script, in Listing 11-22.

Listing 11-24 shows what happens if you specify two appropriate values (30 and salesrep) on the
command line calling the script.

Listing 11-24. Calling a Script with Command-Line Arguments

SQL> @testscript 30 salesrep

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30

303

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
 7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----
 30 SALES CHICAGO 7698

SQL>

SQL*Plus Commands in Scripts
SQL*Plus scripts may contain a mixture of SQL commands and SQL*Plus commands. This combination
makes SQL*Plus a nice report-generating tool, as you will see in the next section of this chapter. One
small problem is that SQL*Plus commands (entered interactively) don’t go into the SQL buffer. Normally
this is helpful, because it allows you to repeat your most recent SQL command from the SQL buffer,
while executing SQL*Plus commands in between. However, this implies that you cannot add any
SQL*Plus commands to your scripts with the SAVE ... APPEND command.

To get SQL*Plus commands into your scripts, you can use one of the following:

� An external editor

� A separate SQL*Plus buffer

Using an external editor is the most straightforward approach, in most cases. For example, you can
use Notepad in a Microsoft Windows environment to maintain your SQL*Plus scripts. The charm of
using a separate SQL*Plus buffer is that it is completely platform- and operating system-independent,
and it is fully driven from the interactive SQL*Plus prompt. That’s why we discuss using a separate buffer
here.

Listing 11-25 shows an example of using a separate SQL*Plus buffer to generate scripts. To try this
out, execute the CLEAR BUFFER and SET BUFFER BLAHBLAH commands, followed by the INPUT command, and
enter the following 14 lines verbatim. Exit SQL*Plus input mode by entering another newline, so that you
return to the SQL*Plus prompt.

Listing 11-25. Using a Separate SQL*Plus Buffer to Generate Scripts

SQL> clear buffer
SQL> set buffer blahblah
SQL> input
 1 clear screen
 2 set verify off
 3 set pause off
 4 accept dept number -
 5 prompt "Enter a department number: "
 6 select *
 7 from departments
 8 where deptno = &dept;
 9 select ename, job, msal
 10 from employees
 11 where deptno = &dept;
 12 undefine dept

304

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 13 set pause on
 14 set verify on
 15
SQL>

Now you can save the script and test it, as follows:

SQL> save testscript2
Created file testscript2.sql

SQL> @testscript2
Enter a department number: 20
...

The SET BUFFER command (choose any buffer name you like) creates a nondefault SQL*Plus buffer.

� Note According to the SQL*Plus documentation, using additional buffers is a deprecated feature since the early
1990s, from SQL*Plus version 3.0 onward. However, it seems to be the only way to prevent the SQL*Plus SAVE
command from appending a slash (/) at the end of the script, which would execute the last SQL command twice if
you have a SQL*Plus command at the end, as in Listing 11-25.

You can only manipulate the contents of nondefault SQL*Plus buffers with the SQL*Plus editor
commands, and use SAVE and GET for file manipulation. You cannot execute the contents of those buffers
with the START or @ command, because these commands operate only on the SQL buffer. That’s why you
must save the script with the SAVE command before you can use it.

SQL*Plus commands are normally entered on a single line. If that is impossible, or if you want to
make your scripts more readable, you must explicitly “escape” the newline character with a minus sign
(-), as we did before with the ACCEPT command in Listing 11-10, and again in Listing 11-25.

� Note The examples in the remainder of this chapter show only the contents of the SQL*Plus scripts. It is up to
you to decide which method you want to use to create and maintain those scripts.

The login.sql Script
One special SQL*Plus script must be mentioned here: login.sql. SQL*Plus automatically executes this
script when you start a SQL*Plus session, as long as the login.sql script is located in the folder (or
directory) from where you start SQL*Plus, or if that script can be found via the SQLPATH environment
variable (under Linux) or Registry setting (under Microsoft Windows).

Note that there is also a global SQL*Plus glogin.sql script. This script is executed for every user, and
it allows you to have a mixture of global settings and personal settings in a multiuser environment. In a

305

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

single-user Oracle environment, using both scripts is useless and can be confusing. The glogin.sql
script is normally located in the sqlplus/admin subdirectory under the Oracle installation directory.

� Caution In Oracle Database 10g, SQL*Plus also executes the glogin.sql and login.sql scripts if you
execute a CONNECT command, without leaving SQL*Plus. This didn’t happen with earlier releases of SQL*Plus.

You can use the glogin.sql and login.sql scripts to set various SQL*Plus system variables, user-
defined variables, and column definitions. Listing 11-26 shows an example of a login.sql script,
demonstrating that you can also execute SQL commands from this script. You can test it by saving this
file to the right place and restarting SQL*Plus.

Listing 11-26. Example of a login.sql Script

-- ===
-- LOGIN.SQL
-- ===
set pause "Enter... "
set pause on
set numwidth 6
set pagesize 24
alter session set nls_date_format='dd-mm-yyyy';
-- define_editor=Notepad /* for Windows */
-- define_editor=vi /* for UNIX */
clear screen

11.4 Report Generation with SQL*Plus
As you’ve learned in previous chapters, the SQL language enables you to write queries. Queries produce
result tables. However, the default layout of those query results is often visually unappealing.

SQL*Plus offers many commands and features to enhance your query results into more readable
reports. SQL*Plus is definitely the oldest “quick-and-dirty” Oracle report generator; the original name in
the 1980s was UFI (User Friendly Interface), before they renamed it as SQL*Plus. Several other Oracle
reporting tools were developed and discarded over the years, but SQL*Plus is still here. Table 11-2 lists
some of the SQL*Plus features you can use for enhancing your reports.

306

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Table 11-2. SQL*Plus Features to Enhance Reports

Feature Description

SET {LINESIZE|PAGESIZE|NEWPAGE} Adjust the page setup; set to 0 suppresses page formatting

SET TRIMSPOOL ON Suppress trailing spaces in SPOOL output

COLUMN Adjust column layouts (header and contents)

TTITLE, BTITLE Define top and bottom page titles

REPHEADHER, REPFOOTER Define report headers and footers

BREAK Group rows (make sure the result is ordered appropriately)

COMPUTE Add aggregate computations on BREAK definitions

SPOOL Spool SQL*Plus output to a file

The SQL*Plus SET command was introduced in Section 11.1, in the discussion of SQL*Plus system

variables. Now we’ll look at the other SQL*Plus commands that are useful for producing reports.

The SQL*Plus COLUMN Command
You also already saw some examples of the COLUMN command. However, the SQL*Plus COLUMN command
has many additional features, as you will learn in this section.

The general syntax of the SQL*Plus COLUMN command is as follows:

SQL> column [<col-name>|<expression>] [<option>...]

If you don’t specify any arguments at all, the COLUMN command produces a complete overview of all

current column settings. If you specify <col-name>, you get only the settings of that column. Note that
<col-name> is mapped with column aliases in the SELECT clause; that is, with the column headings of the
final query result. You can use <expression> to influence SELECT clause expressions; make sure to copy
the expression verbatim from the query. For <option>, you can specify various ways to handle the
column. Table 11-3 shows a selection of the valid options for the COLUMN command.

307

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Table 11-3. Some SQL*Plus COLUMN Command Options

Option Description

ALI[AS] Column alias; useful in BREAK and COMPUTE commands

CLE[AR] Reset all column settings

FOLD_A[FTER] Insert a carriage return after the column

FOR[MAT] Format display of column values

HEA[DING] Define (different) column title for display

JUS[TIFY] Justify column header: LEFT, CENTER or CENTRE, RIGHT

LIKE Copy settings over from another column

NEWL[INE] Force a new line before this column

NEW_V[ALUE] Substitution variable to retain the last column value

NO[PRI[NT]] Suppress (NOPRINT) or display (PRINT) specific columns

NUL[L] Display of null values in specific columns

ON | OFF Toggle to activate/deactivate column settings

WRA[PPED] Wrap too-long column values to the following line

WOR[D_WRAPPED] Wrap too-long column values to the following line, splitting the column value
between words

TRU[NCATED] Truncate too-long column values

The last three COLUMN options are mutually exclusive. In Table 11-3, the brackets indicate the

abbreviations you can use. For example, you can abbreviate the first SQL*Plus command in Listing 11-27
as COL ENAME FOR A20 HEA LAST_NAME JUS C, if you like. If you do not specify a JUSTIFY value for a column,
SQL*Plus uses the following alignment defaults:

� NUMBER column headings default to RIGHT.

� Other column headings default to LEFT.

Listings 11-27 through 11-29 show some examples of the SQL*Plus COLUMN command.

308

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Listing 11-27. Using COLUMN FORMAT, HEADING, JUSTIFY, and LIKE

SQL> select empno, ename, bdate
 2 , msal as salary
 3 , comm as commission
 4 from employees;

 EMPNO ENAME BDATE SALARY COMMISSION
------ -------- ----------- -------- ----------
 7369 SMITH 17-DEC-1965 800
 7499 ALLEN 20-FEB-1961 1600 300
 7521 WARD 22-FEB-1962 1250 500
...
14 rows selected.

SQL> col ename format a20 heading last_name justify center
SQL> col salary format $9999.99
SQL> col commission like salary
SQL> col salary heading month|salary
SQL> /
 month
 EMPNO last_name BDATE salary COMMISSION
------ -------------------- ----------- --------- ----------
 7369 SMITH 17-DEC-1965 $800.00
 7499 ALLEN 20-FEB-1961 $1600.00 $300.00
 7521 WARD 22-FEB-1962 $1250.00 $500.00
...
14 rows selected.

SQL>

Note the effects of the vertical bar (|) in the COL SALARY command and the LIKE option for the

COMMISSION column.
Listings 11-27 and 11-28 illustrate an important property of the COLUMN command: you must always

specify the column alias, not the original column name, as its argument.

Listing 11-28. Using COLUMN NOPRINT, ON, OFF

SQL> col COMM NOPRINT -- Note the column name
SQL> select empno, ename, bdate
 2 , msal as salary
 3 , comm as commission -- and the column alias
 4 from employees;
 month
 EMPNO last_name BDATE salary COMMISSION
------ -------------------- ----------- --------- ----------
 7369 SMITH 17-DEC-1965 $800.00
 7499 ALLEN 20-FEB-1961 $1600.00 $300.00
 7521 WARD 22-FEB-1962 $1250.00 $500.00
...
14 rows selected.

309

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

SQL> col COMMISSION NOPRINT -- Now you use the column alias instead
SQL> /
 month
 EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
 7369 SMITH 17-DEC-1965 $800.00
 7499 ALLEN 20-FEB-1961 $1600.00
 7521 WARD 22-FEB-1962 $1250.00
...
14 rows selected.

SQL> col commission off
SQL> /
 month
 EMPNO last_name BDATE salary COMMISSION
------ -------------------- ----------- --------- ----------
 7369 SMITH 17-DEC-1965 $800.00
 7499 ALLEN 20-FEB-1961 $1600.00 300
 7521 WARD 22-FEB-1962 $1250.00 500
...
SQL> col commission
COLUMN commission OFF
FORMAT $9999.99
NOPRINT
SQL> col commission on
SQL>

The NEW_VALUE feature of the COLUMN command is very nice, and you can use it for various tricks in

SQL*Plus scripts. As you can see in Listing 11-29, the user-defined BLAH variable remembers the last
EMPNO value for you.

Listing 11-29. Using COLUMN NEW_VALUE

SQL> col empno new_value BLAH
SQL> /
 month
 EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
 7369 SMITH 17-DEC-1965 $800.00
 7499 ALLEN 20-FEB-1961 $1600.00
 ...
 7934 MILLER 23-JAN-1962 $1300.00

14 rows selected.

SQL> def BLAH
DEFINE BLAH = 7934 (NUMBER)

SQL> I
 5 where deptno = 30;
 month

310

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
 7499 ALLEN 20-FEB-1961 $1600.00
 7521 WARD 22-FEB-1962 $1250.00
 7654 MARTIN 28-SEP-1956 $1250.00
 7698 BLAKE 01-NOV-1963 $2850.00
 7844 TURNER 28-SEP-1968 $1500.00
 7900 JONES 03-DEC-1969 $800.00

SQL> define BLAH
DEFINE BLAH = 7900 (NUMBER)

SQL> undefine BLAH
SQL>

The SQL*Plus TTITLE and BTITLE Commands
As you have seen so far, the SQL*Plus COLUMN command allows you to influence the report layout at the
column level, and you can influence the overall page layout with the SQL*Plus SET PAGESIZE and SET
LINESIZE commands. You can further enhance your SQL*Plus reports with the SQL*Plus TTITLE and
BTITLE commands, which allow you to add page headers and footers to your report. The syntax is as
follows:

SQL> ttitle [<print-spec> {<text>|<variable>}...] | [OFF|ON]
SQL> btitle [<print-spec> {<text>|<variable>}...] | [OFF|ON]

As Listing 11-30 shows, you can also use these commands to display their current settings (by

specifying no arguments) or to enable/disable their behavior with ON and OFF.

Listing 11-30. Using TTITLE and BTITLE

SQL> set pagesize 22
SQL> set linesize 80
SQL> ttitle left 'SQL*Plus report' -
 > right 'Page: ' format 99 SQL.PNO -
 > skip center 'OVERVIEW' -
 > skip center 'employees department 30' -
 > skip 2
SQL> btitle col 20 'Confidential' tab 8 -
 > 'Created by: ' SQL.USER
SQL> /
SQL*Plus report Page: 1
 OVERVIEW
 employees department 30

 month
 EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
 7499 ALLEN 20-FEB-1961 $1600.00
 7521 WARD 22-FEB-1962 $1250.00

311

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 7654 MARTIN 28-SEP-1956 $1250.00
 7698 BLAKE 01-NOV-1963 $2850.00
 7844 TURNER 28-SEP-1968 $1500.00
 7900 JONES 03-DEC-1969 $800.00

 Confidential Created by: BOOK
SQL> btitle off
SQL> btitle
btitle OFF and is the following 66 characters:
col 20 'Confidential' tab 8 'Created by: ' SQL.USER
SQL> ttitle off
SQL>

The output in Listing 11-30 shows the effects of the TTITLE and BTITLE commands. Note that we use

two predefined variables: SQL.PNO for the page number and SQL.USER for the current username.
The TTITLE and BTITLE commands have several additional features. SQL*Plus also supports the

REPHEADER and REPFOOTER commands, which allow you to add headers and footers at the report level, as
opposed to the page level. See SQL*Plus User’s Guide and Reference for more information about these
commands.

The SQL*Plus BREAK Command
You can add “breaks” to the result of your reports with the SQL*Plus BREAK command. Breaks are
locations in your report: between certain rows, between all rows, or at the end of the report. You can
highlight breaks in your reports by suppressing repeating column values, by inserting additional lines, or
by forcing a new page.

Breaks are also the positions within your reports where you can add subtotals or other data
aggregations. You can use the SQL*Plus COMPUTE command for that purpose. Let’s investigate the
possibilities of the BREAK command first.

The syntax of the SQL*Plus BREAK command is shown in Figure 11-1.

Figure 11-1. A BREAK command syntax diagram

For eelement, you can specify a column name or a column expression, or a special report element, as
discussed at the end of this section. The action values are listed in Table 11-4.

312

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Table 11-4. SQL*Plus BREAK Command Actions

Action Description

SKIP n Skip n lines

SKIP PAGE Insert a page break

[NO]DUPLICATES Suppress or show duplicate values; NODUPLICATES is the default

Listing 11-31 shows an example of a BREAK command.

Listing 11-31. Using the BREAK Command

SQL> clear columns

SQL> select deptno, job, empno, ename, msal, comm
 2 from employees
 3 order by deptno, job;

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 10 ADMIN 7934 MILLER 1300
 10 DIRECTOR 7839 KING 5000
 10 MANAGER 7782 CLARK 2450
 20 MANAGER 7566 JONES 2975
 20 TRAINER 7369 SMITH 800
...
14 rows selected.

SQL> break on deptno skip 2
SQL> /
 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 10 ADMIN 7934 MILLER 1300
 DIRECTOR 7839 KING 5000
 MANAGER 7782 CLARK 2450

 20 MANAGER 7566 JONES 2975
 TRAINER 7369 SMITH 800
...
14 rows selected.

SQL> break
break on deptno skip 2 nodup

SQL> break on deptno page
SQL> set pause "Enter... "
SQL> /

313

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

[Enter]...

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 10 ADMIN 7934 MILLER 1300
 DIRECTOR 7839 KING 5000
 MANAGER 7782 CLARK 2450
[Enter]...

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 20 MANAGER 7566 JONES 2975
 TRAINER 7369 SMITH 800
...
14 rows selected.
SQL>

Note the ORDER BY clause in the query in Listing 11-31. You need this clause for the BREAK command

to work properly. The BREAK command itself does not sort anything; it just processes the rows, one by
one, as they appear in the result.

Note also that you can have only one break definition at any time. Each break definition implicitly
overwrites any current break definition. This implies that if you want two breaks for your report, at
different levels, you must define them in a single BREAK command; for an example, see Listing 11-32.

Listing 11-32. Multiple Breaks in a Single BREAK Command

SQL> break on deptno skip page -
 > on job skip 1
SQL> /
[Enter]...

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 10 ADMIN 7934 MILLER 1300

 DIRECTOR 7839 KING 5000

 MANAGER 7782 CLARK 2450

[Enter]...

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 20 MANAGER 7566 JONES 2975

 TRAINER 7369 SMITH 800
 7902 FORD 3000
 7788 SCOTT 3000
 7876 ADAMS 1100
...
14 rows selected.

314

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

SQL> break
break on deptno page nodup
 on job skip 1 nodup
SQL>

Note that you don’t use any commas as break definition delimiters.
As you have seen so far, you can define breaks on columns or column expressions. However, you

can also define breaks on two special report elements:

� ROW forces breaks on every row of the result.

� REPORT forces a break at the end of your report.

The SQL*Plus COMPUTE Command
The SQL*Plus COMPUTE command allows you to add aggregating computations on your break definitions.
The syntax of the COMPUTE command is shown in Figure 11-2.

Figure 11-2. A COMPUTE command syntax diagram

Table 11-5 lists the various functions supported by the SQL*Plus CCOMPUTE command.
The expr indicates on which column you want the function to be applied. The break spec indicates

at which points in the report you want this computation to happen. The break spec must be a column,
column expression, or a report element (ROW or REPORT) on which you previously defined a BREAK.

Listing 11-33 shows an example of using COMPUTE.

315

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Table 11-5. SQL*Plus COMPUTE Functions

Function Description

AVG The average

COUNT The number of NOT NULL column values

MAX The maximum

MIN The minimum

NUMBER The number of rows

STD The standard deviation

SUM The sum

VAR The variance

Listing 11-33. Using COMPUTE for Aggregation

SQL> set pause off
SQL> break on deptno skip page on job
SQL> compute sum label total of msal on deptno
SQL> compute count number of comm on deptno
SQL> /
 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 10 ADMIN 7934 MILLER 1300
 DIRECTOR 7839 KING 5000
 MANAGER 7782 CLARK 2450
******** ******** -------- --------
count 0
number 3
total 8750

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 20 MANAGER 7566 JONES 2975
 TRAINER 7369 SMITH 800
 7902 FORD 3000
 7788 SCOTT 3000
 7876 ADAMS 1100
******** ******** -------- --------
count 0
number 5
total 10875

316

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

 DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------
 30 ADMIN 7900 JONES 800
 MANAGER 7698 BLAKE 2850
 SALESREP 7499 ALLEN 1600 300
 7654 MARTIN 1250 1400
 7844 TURNER 1500 0
 7521 WARD 1250 500
******** ******** -------- --------
count 4
number 6
total 9250

14 rows selected.

SQL> compute
COMPUTE sum LABEL 'total' OF msal ON deptno
COMPUTE count LABEL 'count' number LABEL 'number' OF comm ON deptno
SQL> clear computes
SQL> clear breaks
SQL>

As Listing 11-33 shows, you can issue multiple COMPUTE commands, and you can have multiple

COMPUTE definitions active at the same time. The CLEAR COMPUTES command erases all compute
definitions, and the CLEAR BREAKS command clears the current break definition.

If you are happy with the final report results on screen, you can store all SQL and SQL*Plus
commands in a script, and add commands to spool the output to a text file, as described in the next
section.

The Finishing Touch: SPOOL
If you look at the results in Listing 11-33, you see that this mixture of SQL and SQL*Plus commands
produces a rather complete report. Now you can use the SQL*Plus SPOOL command to save the report
into a file; for example, to allow for printing. The syntax is as follows:

SQL> spool [<file-name>[.<ext>] [CREATE|REPLACE|APPEND] | OFF | OUT]

If you specify no arguments, the SPOOL command reports its current status. The default file name

extension <ext> is LST or LIS on most platforms. SPOOL OFF stops the spooling. SPOOL OUT stops the
spooling and sends the result to your default printer.

Suppose you have saved the example of Listing 11-33 in a script, containing all SQL*Plus commands
and the SQL query. You can turn this script into a complete report by changing the contents as indicated
in Listing 11-34. For readability, the three lines to be added are highlighted. The TRIMSPOOL setting
suppresses trailing spaces in the result, and the REPLACE option of the SPOOL command ensures that an
existing file (if any) will be overwritten.

317

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Listing 11-34. Using the SPOOL Command to Generate SQL*Plus Reports

 set pause off
 break on deptno skip page on job
 compute sum label total of msal on deptno
 compute count number of comm on deptno
>>> set trimspool on <<< added line
>>> spool report.txt replace <<< added line
 -- The query
 select deptno, job, empno, ename, msal, comm
 from employees
 order by deptno, job;
>>> spool off <<< added line
 -- Cleanup section
 undefine dept
 clear computes
 clear breaks
 set pause on

If you execute this script, it generates a text file named report.txt in the current folder/directory.

11.5 HTML in SQL*Plus
SQL*Plus supports the ability to generate reports in HTML format, allowing you to display the report
results in a browser environment. SQL Developer has more features than SQL*Plus in this area, because
it runs in a browser environment itself. Let’s look at SQL*Plus first.

HTML in SQL*Plus
The SQL*Plus MARKUP setting is very important if you want to work with HTML. Listing 11-35 shows why
this is so.

Listing 11-35. The SQL*Plus MARKUP Setting

SQL> show markup
markup HTML OFF HEAD "<style type='text/css'> body
{font:10pt Arial,Helvetica,sans-serif; color:black; background:White;} p {font:1F
SQL> set markup
SP2-0281: markup missing set option
Usage: SET MARKUP HTML [ON|OFF] [HEAD text] [BODY text]
 [TABLE text] [ENTMAP {ON|OFF}] [SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]
SQL>

318

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

The SQL*Plus error message in Listing 11-35 (followed by the “Usage:” text) precisely indicates what
you can do to fix the problem with the incomplete SET MARKUP command:

� SET MARKUP HTML is mandatory, followed by ON or OFF.

� HEAD allows you to specify text for the HTML <header> tag, BODY for the <body> tag,
and TABLE for the <table> tag, respectively.

� ENTMAP allows you to indicate whether SQL*Plus should replace some special
HTML characters (such as <, >, ', and &) with their corresponding HTML
representations (<, >, ", and &).

� SPOOL lets you spool output to a file, without needing to use an additional
SQL*Plus SPOOL command.

� PREFORMAT allows you to write output to a <pre> tag. The default value is OFF.

The HEADER option of the SET MARKUP command is particularly interesting, because it allows you to
specify a cascading style sheet. Let’s perform some experiments, as shown in Listing 11-36.

Listing 11-36. Using the SQL*Plus SET MARKUP Command

SQL> set markup html on head "<title>SQL*Plus demo</title>"
SQL> select ename,init from employees where deptno = 10;

<p>
<table border='1' width='90%' align='center' summary='Script output'>
<tr>
<th scope="col">
last_name
</th>
<th scope="col">
INIT
</th>
</tr>
<tr>
<td>
CLARK
</td>
<td>
AB
</td>
</tr>
<tr>
<td>
KING
</td>
<td>
CC
</td>
</tr>
<tr>
<td>

319

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

MILLER
</td>
<td>
TJA
</td>
</tr>
</table>
<p>

SQL> set markup html off

SQL>

As you can see in Listing 11-36, the screen output is in HTML format. Obviously, the MARKUP setting

becomes truly useful in combination with the SQL*Plus SPOOL command, allowing you to open the result
in a browser. The combination of the SQL*Plus MARKUP and SPOOL commands is so obvious that you are
able to specify SPOOL ON as an option in the MARKUP setting (see Listing 11-35).

� Tip You can also specify the MARKUP setting as a command-line argument when you launch SQL*Plus. This is
useful for certain reports, because SQL*Plus then processes the <html> and <body> tags before the first command
is executed.

If you execute the SQL*Plus script in Listing 11-37, you will note what happens as a consequence of
the SET ECHO OFF TERMOUT OFF command: the SQL*Plus screen remains empty. SQL*Plus only writes the
results to a file.

Listing 11-37. Contents of the htmldemoscript.sql Script

-- ================================
-- htmldemoscript.sql
-- ================================
SET ECHO off TERMOUT OFF
set markup html on spool on -
 preformat off entmap on -
 head "<title>HTML Demo Report</title> -
 <link rel='stylesheet' href='x.css'>"

spool htmldemo.htm replace

select empno, ename, init, msal
from employees
where deptno = 20;

spool off
set markup html off
set echo on

320

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Figure 11-3 shows what happens if you open the result in a browser. The example assumes that you
have an x.css cascading style sheet document in the current folder/directory.

Figure 11-3. The result of htmldemoscript.sql in a browser

One more tip: you can achieve various “special effects” by selecting HTML fragments as
alphanumerical literals in your queries. Listing 11-38 shows what happens if you add the following
fragment to the htmldemoscript.sql script, just before the SPOOL OFF command.

Listing 11-38. Addition to the htmldemoscript.sql Script

set markup html entmap off preformat on
set heading off

select ' Visit this web site'
from dual;

11.6 Building SQL*Plus Scripts for Automation
Inevitably, as you work in SQL*Plus, you will want to create scripts of SQL commands that do more than
generate a nicely-formatted report in text or HTML. You will want a script that has all the characteristics
of a “batch” program: capturing input parameters, performing complex tasks, passing data values from
one SQL statement into another, handling error conditions intelligently, and returning meaningful exit
status codes to the calling environment. An amazing volume of these scripts exists on every database
server in the world, and the power of SQL*Plus enables a developer or database administrator to do
practically anything by means of SQL*Plus scripts.

What Is a SQL*Plus Script?
As introduced earlier in this chapter, a SQL*Plus script is a file containing SQL*Plus commands
intermixed with SQL statements. Generally, SQL*Plus scripts have “.sql” file-extensions, but any type of
file can be executed as a script using the SQL*Plus START command or its “@” abbreviation.

321

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

SQL*Plus scripts are often used simply to save useful SQL statements, to avoid having to re-type
them again. But SQL*Plus scripts can also be used for automation purposes, to regularly run an
important report or batch program from a job-scheduling program. This section is geared more toward
learning SQL*Plus features for creating bullet-proof, automatable programs.

Besides containing one or more SQL statements, many scripts (like many batch programs) need to
do one or more of the tasks listed in Table 11-6.

Table 11-6. Tasks of a SQL*Plus Script

Task Description

Inputting parameters Capturing and using input parameters passed in from the calling
environment

Passing data values Passing data values retrieved by one SQL statement into a subsequent
SQL statement

Handling error conditions Continuing or ending the SQL*Plus script when an error is encountered

Returning exit status Passing a “status code” back to the calling environment upon exit from
the script

Executing SQL or PL/SQL Oh yeah – the SQL or PL/SQL code that is the object of the script!

Only the ability to execute SQL or PL/SQL statements is required—all of the other tasks are just

optional, but let’s look at them one by one, so you’ll know how to use them when you want them.

Capturing and Using Input Parameter Values
Input parameters are data values passed into a program when it starts. For a SQL*Plus script, data values
can be specified within SQL*Plus using the START and @ commands. Listing 11-39 provides an example.
Start and @ are each used to invoke a script named demoscript.sql (the .sql extension is the default).
Two parameters are passed for each invocation.

Listing 11-39. Two Input Parameters Using the START and @ Commands

start demoscript 01-FEB-2010 TRUE
@demoscript 01-FEB-2010 TRUE

Input parameter values can also be specified when SQL*Plus is started. You pass such parameters
on the command line, following the name of the script. Listing 11-40 provides an example.

Listing 11-40. Passing Input Parameters into a SQL*Plus Script from a UNIX shell or Windows Command

Prompt

sqlplus book/<password> @demoscript ename 01-FEB-2010

322

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

In Listing 11-40, you see the SQL*Plus command connecting as SCOTT (password TIGER) and calling
the “demoscript.sql” script with the two input parameter values of ename and 01-FEB-2010.

Inside the SQL*Plus script, these input parameters are accessed as ordinal substitution parameters.
Use &1 to refer to the first parameter, &2 to refer to the second, and so forth. See Listing 11-41 for an
example.

Listing 11-41. Retrieving Input Parameter Values Inside the SQL*Plus Script

select &1 from employees
where hire_date >= to_date(‘&2’, ‘DD-MON-YYYY’)
and hire_date < to_date(‘&2’,’DD-MON-YYYY’) + 1;

If you prefer more meaningful variable names, you can use the SQL*Plus DEFINE command to copy

an input parameter value into a substitution variable of your choice. Listing 11-42 assigns the values
from &1 and &2 to the more meaningfully named variables V_SELECTCOL and V_HIRE_DT.

Listing 11-42. Storing Input Parameter Values Within Substitution Variables

define V_SELECTCOL=”&1”
define V_HIRE_DT=”&2”
select &&V_SELECTCOL from employees
where hire_date >= to_date(‘&&V_HIRE_DT’, ‘DD-MON-YYYY’)
and hire_date < to_date(‘&&V_HIRE_DT’,’DD-MON-YYYY’) + 1;

Using meaningful variable names as shown in Listing 11-42 contributes to ease of maintenance

down the road. Your SQL*Plus script is a little more readable and understandable, thus a little more
maintainable.

When looking at the input parameters and how they are being used, please note that the first input
parameter in the examples so far (ename) is not a data value, as is the second input parameter (01-FEB-
2010). Instead, it is the name of a column in the EMPLOYEES table. In essence, substitution variables can be
used to change the keywords, not just data values, in the SQL statement. In fact, a substitution variable
can contain an entire clause or an entire SQL statement, if you so wish. So, substitution variables are
quite versatile in general, and they are the method by which data values and other directives are passed
into a SQL*Plus script.

Passing Data Values from One SQL Statement to Another
More complex SQL*Plus scripts are likely to be comprised of several SQL statements, and sometimes it is
useful to extract data from the database and pass that data to another SQL statement or SQL*Plus
command. A good example of this might be naming an output file spooled from the script by including
the name of the database instance along with today’s date. Another example of this might be when data
is extracted with one query and passed to anther query.

Mechanism 1: The NEW_VALUE Clause
There are two mechanisms for passing values between SQL statements, the first using SQL*Plus
substitution variables and the second by using SQL*Plus bind variables. With substitution variables, you

323

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

can use the COLUMN … NEW_VALUE command to save the last value retrieved from a SELECT statement into a
substitution variable. Listing 11-43 shows an example of using the NEW_VALUE clause.

Listing 11-43. Passing Data Values from One SQL Statement to Another Using Substitution Variables

define V_HIRE_DT=”&1”
column empno new_value V_EMPNO
select empno from employees
where hire_date >= to_date(‘&&V_HIRE_DT’, ‘DD-MON-YYYY’)
and hire_date < to_date(‘&&V_HIRE_DT’,’DD-MON-YYYY’) + 1;

select ename from employees
where empno = &&V_EMPNO;

Here, the COLUMN EMPNO command specifies that the last value retrieved (NEW_VALUE) will be stored in

a SQL*Plus substitution variable named V_EMPNO. So, in this example, we run the query against the
EMPLOYEES table for the employees hired on the date specified by the substitution variable V_HIRE_DT,
then the last EMPNO column value retrieved is saved into the V_EMPNO substitution variable. Then, the
V_EMPNO substitution variable can be used in the WHERE clause of the subsequent SQL statement, as shown
in Listing 11-43.

Obviously, there are limitations. If the first query returns more than one row, then only the value
from the last row will be retained in the substitution variable and passed to the second query. So, it is far
from perfect, but it has its uses. If all rows retrieved need to be passed to the second query, then the best
method would be either to rewrite the SQL so that both steps are performed in the same SQL statement
or to “glue” the two SQL statements together within a PL/SQL program using PL/SQL collections.

Mechanism 2: Bind Variables
Another technique of passing data values between SQL statements in a SQL*Plus script involves the use
of SQL*Plus bind variables. Unlike substitution variables, bind variables act like bind variables in PL/SQL
programs or other programming languages such as Java, C/C++, Perl, or others. That is, unlike
substitution variables which are resolved within SQL*Plus before a SQL statement is sent down to the
database engine, bind variables are sent down to the database engine and resolved there. So, they can be
used only for bind values in SQL statement SELECT, WHERE, GROUP BY, ORDER BY, SET, and VALUES clauses,
and they cannot be used to replace the actual keywords or column names or table names in a SQL
statement, as substitution variables can.

Bind variables must first be declared with a VARIABLE command. Once you’ve done that, you can use
bind variables to generate data in one statement and use it in another, as shown in Listing 11-44.

Listing 11-44. Passing Data Values from One SQL Statement to Another Using Bind Variables

variable v_empno number
select empno into :v_empno from employees
where hire_date >= to_date(‘&&V_HIRE_DT’, ‘DD-MON-YYYY’)
and hire_date < to_date(‘&&V_HIRE_DT’,’DD-MON-YYYY’) + 1;

select ename from employees
where empno = :v_empno;

324

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

So, in Listing 11-44, we declare a bind variable named v_empno as a numeric datatype, and then
populate it using the INTO clause of a SELECT statement which queries from the EMPLOYEE table. Please
note the leading full-colon (:) character used to denote a bind variable.

Handling Error Conditions
When we run SQL statements interactively in SQL*Plus or SQL Developer or another utility, we decide
how to react to an error. If a SQL statement fails from a syntax error or from an unexpected data
condition such as ORA-01403: no rows found, do we want to proceed and run the next SQL statement, or
do we want to simply roll back all work that has been done and exit? When executing interactively, we
can decide interactively. But what about when we’re running a script?

SQL*Plus provides the WHENEVER command to direct SQL*Plus how to react to failures. WHENEVER is
particularly useful when running a script. Table 11-7 describes two variations of the command.

Table 11-7. WHENEVER Error-Handling Conditions

Error condition Description

WHENEVER OSERROR Triggers whenever a SQL*Plus command like CONNECT, DISCONNECT, SPOOL, HOST,
START, or any other command which interacts with the operating system fails.

WHENEVER SQLERROR Triggers whenever a SQL statement like SELECT, INSERT, UPDATE, DELETE, CREATE,
ALTER, DROP, TRUNCATE, GRANT, REVOKE, or any other SQL command fails.

Both of the commands in Table 11-7 have two possible directives: EXIT and CONTINUE. Each directive,

in turn, implements two further directives describing how to handle an open transaction and (if
necessary) what exit status to return to the operating system. Table 11-8 describes the options that you
can pass to EXIT and CONTINUE.

Table 11-8. WHENEVER Error-Handing Directives

Error condition Description

EXIT [exit-status | txn-directive] Exit from SQL*Plus with the specified exit status after
committing or rolling back the current transaction as directed.

CONTINUE [txn-directive] Continue executing SQL*Plus after committing, rolling back,
or doing nothing.

325

CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

Exit-status Can be one of:

[SUCCESS | FAILURE | n | substitution-variable | bind-
variable]

where SUCCESS is an operating-system dependent exit status
signifying successful completion, FAILURE is an operating-
system dependent exit status signifying failure, and n is a
number value. SQL*Plus substitution variables and SQL*Plus
bind variables containing numeric values can also be used as
return statuses. SUCCESS is the default.

Txn-directive Can be one of:

[COMMIT | ROLLBACK | NONE]

where NONE can be used only with the CONTINUE directive.
When used with the EXIT directive, COMMIT is the default and
when used with the CONTINUE directive, NONE is the default.

So, if a SQL*Plus script contains five UPDATE statements in a row and you want the script to stop

executing, roll back any work already performed, and then exit to the operating system with a failure
status, your script might look something like that shown in Listing 11-45.

Listing 11-45. Error-Handling in a SQL*Plus Script

whenever oserror exit failure rollback
whenever sqlerror exit failure rollback
set echo on feedback on timing on
spool update_script
update …
update …
update …
update …
update …
exit success commit

In Listing 11-45, we see the use of the WHENEVER command directing SQL*Plus to exit back to the

operating system with a FAILURE exit status, and perform a ROLLBACK as it does so, should any OS
commands (such as SPOOL) or SQL commands (such as UPDATE) fail. If all of the commands are successful
and we reach the very last line of the script, then we will EXIT back to the operating system with SUCCESS
exit status and perform a COMMIT as it does so.

11.7 Exercises
The following exercises allow you to practice using the commands covered in this chapter. See Appendix
B for the answers.

326

 CHAPTER 11 � WRITING AND AUTOMATING SQL*PLUS SCRIPTS

327

1. Look at Listings 11-26 and 11-37. Apart from aesthetics, there is another
important reason why the lines surrounding the script headers in those two
listings switch from minus signs to equal signs. Obviously, the first two minus
signs are mandatory to turn the lines into comments. What would be wrong
with using only minus signs?

2. Create a SQL*Plus script to create indexes. The script should prompt for a table
name and a column name (or list of column names), and then generate the
index name according to the following standard: i_<tab-id>_<col-id>.

3. Create a SQL*Plus script to produce an index overview. The script should
prompt for a table name, allowing you to specify any leading part of a table
name. That is, the script should automatically append a % wildcard to the
value entered. Then it should produce a report of all indexes, showing the table
name, index name, index type, and number of columns on which the index is
based.

4. Create a script that disables all constraints in your schema.

C H A P T E R 12

� � �

Object-Relational Features

As promised in the introduction of this book, this final chapter discusses some object-relational features
of the Oracle DBMS. For a proper understanding and appreciation of object-relational database features
in general, you should consider those features in the context of an object-oriented development
environment. Because this book is devoted to Oracle SQL, this chapter focuses on the consequences of
these object-relational features for the SQL language.

The first step in setting up an object-relational environment is the definition of the appropriate
collection of object types and methods. Once you have defined your object types, you can use them to
create object tables, thus creating a truly object-relational environment. You can also use object views to
create an object-relational layer on top of standard relational environments. This chapter mainly uses
object types as a starting point for creating user-defined datatypes, and then using those datatypes in
relational table structures.

Along with “regular” user-defined datatypes, there are two special user-defined datatypes, also
referred to as collection types because they are multivalued: variable arrays and nested tables. The first
four sections of this chapter cover collection types and user-defined datatypes.

Section 12.5 introduces the ANSI/ISO standard multiset operators, which allow you to perform
various sophisticated operations with nested tables. Note that the PL/SQL language normally plays an
important role in creating an object-relational environment. PL/SQL is the programming language you
need in the definition phase of such an environment. Because PL/SQL is not covered in this book, we
assume some basic knowledge of this language.

� Note Instead of PL/SQL, you can also use the Java language to create an object-relational environment.

12.1 More Datatypes
So far in this book, we have used only the standard, built-in datatypes supported by Oracle, such as
NUMBER, BINARY_FLOAT, BINARY_DOUBLE, DATE, TIMESTAMP [WITH [LOCAL] TIMEZONE], INTERVAL, [N]CHAR, and
[N]VARCHAR2. This means that we haven’t discussed the following two Oracle datatype categories:

� Collection datatypes: These are variable arrays (varrays) and nested tables. You are
probably familiar with the concept of arrays from other programming languages,
and nested tables are tables within a table.

� User-defined datatypes: These allow you (as the name indicates) to define your
own complex datatypes.

329

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

Collection Datatypes
Collection datatypes are a special case of user-defined datatypes. Collection datatypes support attributes
that can have multiple values. For example, you can store a list of phone numbers for each employee in a
single column, or you can add a set of errata entries to every row in the COURSES table.

The first example (adding a list of phone numbers) is an obvious candidate for using a varray,
because, in general, you know the maximum length of such a list of phone numbers in advance. Also,
you probably want to assign some meaning to the order of the phone numbers in the list (office
extension, home, mobile, fax, and so on).

It is probably better to implement the second example (maintaining course errata) with a nested
table, because you don’t have an idea beforehand about how many errata entries to expect. Also, the
physical order of those errata is irrelevant, as long as you store enough errata attributes.

� Note As you will see soon, you cannot create nested tables without using user-defined datatypes.

As a user-defined datatype, you might, for example, create an ADDRESS type, with STREET, NUMBER,
POSTALCODE, and CITY components. You can create arrays of user-defined datatypes. For example, you
could use the ADDRESS type to add an array of addresses to the OFFERINGS table. That would allow you to
store multiple alternative location addresses for course offerings. If you want to store only a single
location address, you obviously don’t need an array—a regular user-defined address type would be
sufficient.

Methods
You can add methods to user-defined datatypes. Methods are operations specifically developed to work
with your user-defined datatypes; for example, to specify how you want to compare two address type
values, or how you want to sort address values.

Methods add a lot of semantic power to your user-defined datatypes. Unfortunately we can’t spend
much time on methods in this book, because you need a great deal of PL/SQL programming to create
methods. If you want to see some method examples, check out the CUSTOMERS table of the OE schema, one
of the standard sample schemas that ships with the Oracle software.

As you will see in the next section, as soon as you create a user-defined datatype in Oracle, you
implicitly get one method “for free”—a method with the same name as the datatype itself. That method
is the constructor method, which allows you to create occurrences of the datatype.

330

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

Object-Relational vs. Standard Relational Techniques

For the examples mentioned so far in this chapter, you could argue that you could implement them very
well with standard relational techniques, as discussed in previous chapters of this book. You could
separate various phone numbers into separate columns, you could create a separate ERRATA table with a
foreign key constraint referring to the COURSES table, and so on.

So when should you choose an object-relational approach rather than a pure relational approach? It might
be a matter of taste, and discussions about taste are probably a waste of time in a technical book like this
one. As the Romans said, “De gustibus non disputandum est...” (That phrase translates to: “There is no
disputing about tastes’”)

It might be the case that you have a powerful object-oriented design and development environment. You
may find that Oracle’s object-relational features enable you to maintain an intuitive and straightforward
mapping between that development environment and the Oracle database structures.

In any case, this book does not speculate about when one approach is better than the other. The examples
in this chapter have a single purpose: to illustrate the object-relational features of the Oracle DBMS.

As you read about the techniques described in this chapter, you may wonder whether they violate the first
normal form as one of the foundations of the relational model. That is not the case. The relational model
does not forbid in any way storing complex or set-valued attributes in your rows. Data “atomicity” is a
rather slippery concept. For example, if you consider DATE values, aren’t you looking at a compound
datatype? A DATE value has meaningful subcomponents, such as year, month, and day. For a thorough
treatment of this subject, see An Introduction to Database Systems, 8th Edition by Chris Date (Addison
Wesley, 2003).

12.2 Varrays
We will begin to explore varrays by implementing the phone list example introduced in the previous
section. To keep our EMPLOYEES table unimpaired, we create a copy of the EMPLOYEES table for our
experiments in this final chapter of the book. We also leave out some of the columns of the original
EMPLOYEES table. See Listing 12-1.

Listing 12-1. Creating a Copy of the EMPLOYEES Table

create table e
as
select empno, ename, init, mgr, deptno
from employees;

Creating the Array
Before we can add a list of phone numbers for every employee in the E table, we must create a
corresponding type first, as shown in Listing 12-2.

331

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

Listing 12-2. Creating and Describing a Type

create or replace type numberlist_t
as varray(4) of varchar2(20);
/

describe numberlist_t
 numberlist_t VARRAY(4) OF VARCHAR2(20)

select type_name, typecode
from user_types;

TYPE_NAME TYPECODE
------------------------ ------------------------------
NUMBERLIST_T COLLECTION

Note that you must end the CREATE TYPE command in Listing 12-2 with a slash (/) in the third line,

although you ended the second line with a semicolon. The reason is that you are not entering an SQL or
an SQL*Plus command; you’re entering a PL/SQL command.

Note also that from now on, you can use this NUMBERLIST_T type as often as you like. It is known to
the database, and its definition is stored in the data dictionary. You can query the USER_TYPES data
dictionary view to see your own type definitions.

� Note To allow other database users to use your type definitions, you must grant them the EXECUTE privilege on
those types.

In Listing 12-3, we add a column to the E table, using the NUMBERLIST_T type we created in Listing 12-
2. Then, we execute a query.

Listing 12-3. Adding a Column Based on the NUMBERLIST_T Type

alter table e add (numlist numberlist_t);

describe e
Name Null? Type
 ------------------------- -------- ---------------
 EMPNO NUMBER(4)
 ENAME NOT NULL VARCHAR2(8)
 INIT NOT NULL VARCHAR2(5)
 MGR NUMBER(4)
 DEPTNO NUMBER(2)
 NUMLIST NUMBERLIST_T

select empno, numlist from e;

332

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

 EMPNO NUMLIST
------- --
 7369
 7499
 7521
 7566
 7654
 7698
 7782
 7788
 7839
 7844
 7876
 7900
 7902
 7934

The query results are not impressive. Obviously, the new NUMLIST column is still empty. So we have

the following two problems to solve:

� How can we populate the NUMLIST column with phone numbers?

� After the column has these phone numbers, how can we retrieve them?

Populating the Array with Values
As mentioned earlier in the chapter, each user-defined object type implicitly has a function of the same
name, allowing you to generate or construct values of that object type. This function is normally referred
to as the constructor method. In other words, if you create a user-defined object type, you get a
constructor method for free, with the same name as the object type.

Listing 12-4 shows how you can assign phone number lists to five employees in the E table. Note
that you can skip elements, if you like, and you can also assign empty number lists.

Listing 12-4. Assigning Values to the NUMLIST Column

update e
set numlist = numberlist_t('1234','06-78765432','029-8765432')
where empno = 7839;

update e
set numlist = numberlist_t('4231','06-12345678')
where empno = 7782;

update e
set numlist = numberlist_t('2345')
where empno = 7934;

update e
set numlist = numberlist_t('','06-23456789')
where empno = 7698;

333

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

update e
set numlist = numberlist_t()
where empno in (7566,7844);

Querying Array Columns
Now let’s see what happens if we select the NUMLIST column, without applying any functions or operators
to that column. In that case, we simply get the values back the same way we inserted them, including the
constructor method, as shown in Listing 12-5.

Listing 12-5. Querying the NUMLIST Column

select empno, numlist
from e
where empno in (7566,7698,77832,7839,7934);

 EMPNO NUMLIST
-------- --
 7566 NUMBERLIST_T()
 7698 NUMBERLIST_T(NULL, '06-23456789')
 7839 NUMBERLIST_T('1234', '06-78765432', '029-8765432')
 7934 NUMBERLIST_T('2345')

If you want to select individual phone numbers from the NUMLIST array, you need to “un-nest” the

phone numbers first. You can un-nest arrays with the TABLE function. Listing 12-6 shows how you can
use the TABLE function for that purpose. (For further details about the TABLE function, see Oracle SQL
Reference.)

Listing 12-6. Using the TABLE Function to Un-Nest the NUMLIST Array

break on empno

select e.empno, n.*
from e
, TABLE(e.numlist) n;

 EMPNO COLUMN_VALUE
-------- ------------------
 7698
 06-23456789
 7782 4231
 06-12345678
 7839 1234
 06-78765432
 029-8765432
 7934 2345

Suppose that we want to go one step further and be able to select specific phone numbers from the

array (for example, the second one). In that case, we need PL/SQL again, because the SQL language does

334

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

not support a direct way to access array elements by their index value. It is not difficult to build a PL/SQL
function to return a certain element from an array. Chapter 5 showed an example of a PL/SQL stored
function to count the number of employees per department (Listing 5-31). Listing 12-7 shows how you
can create a PL/SQL stored function to return the first phone number from the NUMLIST array, assuming
that number represents the internal extension number.

Listing 12-7. Creating a PL/SQL Function to Return Array Elements

create or replace function ext
 (p_varray_in numberlist_t)
return varchar2
is
 v_ext varchar2(20);
begin
 v_ext := p_varray_in(1);
 return v_ext;
end;
/
Function created.

select ename, init, ext(numlist)
from e
where deptno = 10;

ENAME INIT EXT(NUMLIST)
-------- ----- ------------
CLARK AB 4231
KING CC 1234
MILLER TJA 2345

The DEPTNO value (10) in the WHERE clause of this query is carefully chosen, in order to avoid error

messages. Just change the DEPTNO value in Listing 12-7, and you will see the corresponding Oracle error
messages.

� Note The EXT stored function is kept as simple as possible. For example, there is no code to handle situations
where employees have no phone number list or an empty phone number list. It is relatively easy to enhance the
EXT function definition with some proper exception handling. However, this is not a PL/SQL book, and the EXT
function is meant only to illustrate the concept.

It is impossible to update specific elements of an array. You can only replace an entire array value
with a new one.

335

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

12.3 Nested Tables
Nested tables offer you more flexibility than arrays. There are many similarities between arrays and
nested tables. However, an important difference is that nested tables require one extra step. In the
previous section, you saw that you create a type and then use it to define arrays. For nested tables, you
first create a type, then you create a table type based on that type, and then you create a nested table
based on that table type.

Creating Table Types
To demonstrate how to use nested tables we will implement the example of maintaining course errata,
introduced in Section 12.1. Listing 12-8 shows how to create the two types we need for implementing the
errata example as a nested table.

Listing 12-8. Creating a Table Type for a Nested Table

create or replace type erratum_t as object
(code varchar2(4)
, ch number(2)
, pg number(3)
, txt varchar2(40)
) ;
/

create or replace type errata_tab_t as table of erratum_t;
/

describe errata_tab_t
 errata_tab_t TABLE OF ERRATUM_T
 Name Null? Type
 ------------------------------- -------- ---------------
 CODE VARCHAR2(4)
 CH NUMBER(2)
 PG NUMBER(3)
 TXT VARCHAR2(40)

Creating the Nested Table
Listing 12-9 shows the next step of creating the nested table based on the ERRATA_TAB_T type. Just as we
did in the previous section with the EMPLOYEES table, we first create a copy C of the COURSES table, to keep
that table unimpaired.

336

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

Listing 12-9. Creating a Table with a Nested Table Column

create table c
as
select * from courses;

alter table c
add (errata errata_tab_t)
nested table errata store as errata_tab;

update c
set errata = errata_tab_t();

In Listing 12-9, the ALTER TABLE command adds an ERRATA nested table column to the C table, and the

UPDATE command assigns an empty nested table to the ERRATA column for every row. Note that we use
the ERRATA_TAB_T table type constructor method for that purpose.

Populating the Nested Table
Now we can add rows to the nested table, as shown in Listing 12-10. Note that you can access nested
tables only within the context of the table they are part of; it is impossible to access them as independent
tables. Listing 12-10 uses the TABLE function again, just as we did before in Listing 12-6, to unnest the
nested table.

Listing 12-10. Inserting Rows into the Nested Table

insert into table (select errata
 from c
 where code = 'SQL')
values ('SQL'
 , 3
 , 45
 , 'Typo in last line.');

We inserted an erratum entry for the SQL course, Chapter 3, page 45. In a similar way, you can also

delete rows from a nested table. As stated in the introduction to this section, nested tables offer more
flexibility than arrays. For example, you can update individual column values of a nested table, whereas
you can only replace arrays in their entirety.

Suppose we made a typo in Listing 12-10 while entering the chapter number: the erratum was not in
Chapter 3, but rather in Chapter 7. Listing 12-11 shows how we can correct this mistake with an UPDATE
command. Note that line 3 introduces tuple variable e ranging over the result of the TABLE function,
allowing us to use that tuple variable on the fourth line to refer to its chapter (CH) column value.

Listing 12-11. Updating Individual Columns of Nested Tables

update table (select errata
 from c
 where code = 'SQL') e
set e.ch = 7;

337

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

Querying the Nested Table
If you want to retrieve all errata entries for the SQL course, you can join the course’s table (C) with its
nested table, as shown in Listing 12-12.

Listing 12-12. Selecting Errata for the SQL Course

select code
, c.description
, e.ch, e.pg, e.txt
from c
 join
 table(c.errata) e
 using (code);

CODE DESCRIPTION
------- ------------------------------
 CH PG TXT
--- --- ------------------------------
SQL Introduction to SQL
 7 45 Typo in last line.

As Listing 12-12 shows, this nested table join syntax is very similar to the syntax you use for regular

joins (discussed in Chapter 8). The TABLE function unnests its column-valued argument (c.errata) into a
table.

Note that you can only refer to c.ERRATA because you specify the C table first in the FROM clause. The
FROM clause order is important in this case. If you swap the two table expressions, you get the following
Oracle error message:

select code
, c.description
, e.ch, e.pg, e.txt
from table(c.errata) e
 join
 c
 using (code);
from table(c.errata) e
 *
ERROR at line 4:
ORA-00904: "C"."ERRATA": invalid identifier

Listing 12-12 shows only a single row, because we inserted only a single erratum into the nested

table. The last section of this chapter revisits nested tables, showing how you can use multiset operators
on nested tables. These multiset operators could be a reason to consider using nested tables instead of
regular (relational) tables with primary key and foreign key constraints. The multiset operators allow you
to write elegant SQL statements that would need quite complicated syntax without them.

338

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

12.4 User-Defined Types
Your application may require a special, complex datatype. In that case, you would create a user-defined
type.

Creating User-Defined Types
The third example mentioned in Section 12.1 was the compound ADDRESS type, used to store addresses
with meaningful subcomponents into a single column. Listing 12-13 shows how you can create such a
type.

Listing 12-13. Creating and Using User-Defined Types

create type address_t as object
(street varchar2(20)
, nr varchar2(5)
, pcode varchar2(6)
, city varchar2(20)
) ;
/

describe address_t

 Name Null? Type
 ---------------------------------- -------- --------------
 STEET VARCHAR2(20)
 NR VARCHAR2(5)
 PCODE VARCHAR2(6)
 CITY VARCHAR2(20)

select type_name, typecode
from user_types;

TYPE_NAME TYPECODE
------------------------------ ------------------
NUMBERLIST_T COLLECTION
ERRATUM_T OBJECT
ERRATA_TAB_T COLLECTION
ADDRESS_T OBJECT

create table o
as
select course, begindate, trainer
from offerings;

alter table o add (address address_t);

update o

339

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

set o.address =
 address_t('','','',
 (select initcap(x.location)
 from offerings x
 where x.course = o.course
 and x.begindate = o.begindate)
)
;

Note that we now have four user-defined types, as shown by the query against the USER_TYPES data

dictionary view. Then we create a copy O of the OFFERINGS table (again, to keep the original table
unimpaired) and add an ADDRESS column to the O table. As a last step, Listing 12-13 updates the O table
with some address values. The last command uses the ADDRESS_T function to generate address values,
leaving the first three address fields empty and selecting the city name from the original OFFERINGS table
with a subquery.

Showing More Information with DESCRIBE
If you use user-defined datatypes, you can change the behavior of the SQL*Plus DESCRIBE command to
show more information, by setting its DEPTH attribute to a value higher than 1 or to ALL. See Listing 12-14
for an example.

Listing 12-14. Setting the DEPTH Attribute of the DESCRIBE Command

describe o
Name Null? Type
----------------- -------- ------------
COURSE NOT NULL VARCHAR2(4)
BEGINDATE NOT NULL DATE
TRAINER NUMBER(4)
ADDRESS ADDRESS_T

set describe depth 2
describe o
Name Null? Type
----------------- -------- ----------------
COURSE NOT NULL VARCHAR2(4)
BEGINDATE NOT NULL DATE
TRAINER NUMBER(4)
ADDRESS ADDRESS_T
 STREET VARCHAR2(20)
 NR VARCHAR2(5)
 PCODE VARCHAR2(6)
 CITY VARCHAR2(20)

The DESCRIBE command now also shows the subcomponents of your user-defined types. If your

object-relational tables have additional method functions, they are shown as well.

340

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

12.5 Multiset Operators
This section discusses the ANSI/ISO standard multiset operators of the SQL language. We will first look
at a complete list of all SQL multiset operators with a brief description. You can use these operators only
on nested tables. Therefore, to allow for some multiset operator examples in this section, we will enter
some more nested table entries in the ERRATA nested table. You will also see how you can convert arrays
into nested tables “on the fly,” using the CAST and COLLECT functions.

Which SQL Multiset Operators Are Available?
If you are using nested tables in your table design, you can apply various SQL multiset operators against
those tables. Multiset operators allow you to compare nested tables, check certain nested table
properties, or derive new nested tables from existing ones.

� Note The SQL language refers to multisets to indicate a rather important difference between these sets and
“regular” sets. In mathematics, duplicate elements in sets are meaningless. In SQL, multisets may have
meaningful duplicates; that is, you cannot ignore duplicates in multisets.

Table 12-1 shows an overview of the Oracle multiset operators. Note that these multiset operators
are also part of the ANSI/ISO SQL standard. For completeness, Table 12-1 not only shows the SQL
multiset operators, but also some other operations you can apply to nested tables.

Table 12-1. SQL Multiset Operators and Functions

Multiset Operator or Function Description

nt1 MULTISET EXCEPT [DISTINCT] nt2 The difference of nt1 and nt2 (equivalent with the MINUS set
operator)

nt1 MULTISET INTERSECT [DISTINCT] nt2 The intersection of nt1 and nt2

nt1 MULTISET UNION [DISTINCT] nt2 The union of nt1 and nt2

CARDINALITY(nt) The number of rows in nt

nt IS [NOT] EMPTY Boolean function to check whether nt is empty

nt IS [NOT] A SET Boolean function to check whether nt contains duplicates

SET(nt) Remove duplicates from nt

nt1 = nt2 Check whether nt1 and nt2 are equal

341

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

nt1 IN (nt2, nt3, ...) Check whether nt1 occurs in a list of nested tables

nt1 [NOT] SUBMULTISET OF nt2 Is nt1 a subset of nt2?

r [NOT] MEMBER OF nt Does row r occur in table nt?

CAST(COLLECT(col)) Produce a nested table based on column col

POWERMULTISET(nt) The set of all nonempty subsets of nt

POWERMULTISET_BY_CARDINALITY(nt,c) The set of all nonempty subsets of nt with cardinality c

The following sections show a few typical examples of using multiset operators and functions. See

the Oracle SQL Reference documentation for examples of all these operators and functions.

Preparing for the Examples
In Section 12.3 of this chapter, you learned how you can store errata entries for courses in a nested table.
In Listing 12-10, we inserted only a single erratum. In Listing 12-15, we insert some more rows into the
ERRATA nested table.

Listing 12-15. Inserting Some More Errata Rows

insert into table (select errata
 from c
 where code = 'SQL')
values ('SQL'
 , 3
 , 46
 ,'Layout illustration');

insert into table (select errata
 from c
 where code = 'SQL')
values ('SQL'
 , 5
 , 1
 ,'Introduction missing.');

insert into table (select errata
 from c
 where code = 'XML')
values ('XML'
 , 5
 , 1
 , 'Introduction missing.');

342

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

insert into table (select errata
 from c
 where code = 'XML')
values ('XML'
 , 7
 , 3
 ,'Line 5: "succeeds" should read "fails"');

Now we have five errata entries in total: three for the SQL course and two for the XML course. If you

execute a “regular” query against the C table and select its ERRATA column without using any modifying
functions, the structure of the ERRATA column (with the nested table) becomes clear from the query
result, as shown in Listing 12-16.

Listing 12-16. Querying a Nested Table Without Using Modifying Functions

col errata format a80 word

select errata
from c
where code = 'SQL';

ERRATA(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),
 ERRATUM_T('SQL', 3, 46, 'Layout illustration'),
 ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

� Note The query output in Listing 12-16 is formatted for readability.

The query result in Listing 12-16 consists of only a single row with a single column. In other words,
you are looking at a complicated but single value. If you interpret that single value “inside out,” you see
that the ERRATUM_T constructor function (or method) appears three times to build individual erratum
entries. These three erratum entries, in turn, are elements in a comma-separated list. The ERRATA_TAB_T
constructor function takes that comma-separated errata list as an argument to convert it into a nested
table.

Using IS NOT EMPTY and CARDINALITY
Listing 12-17 uses the IS NOT EMPTY operator to select only those courses that have at least one erratum
entry, and it uses the CARDINALITY function to show the number of errata for those courses.

Listing 12-17. IS NOT EMPTY and CARDINALITY Example

select code, cardinality(errata)
from c

343

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

where errata is not empty;

CODE CARDINALITY(ERRATA)
------- -------------------
SQL 3
XML 2

A corresponding query against a “regular” relational errata table would need a COUNT(*), a GROUP BY,

and a HAVING clause.

Using POWERMULTISET
Listing 12-18 shows how you can produce the powermultiset of the ERRATA column for the SQL course. To
increase the readability of the results in Listing 12-18, we issue a SQL*Plus BREAK command, which
highlights the fact that the query result contains seven rows. Every row is a subset of the ERRATA nested
table for the SQL course.

� Note In mathematics, the powerset of a set X is the set consisting of all possible subsets of X.

Listing 12-18. POWERMULTISET Example

break on row page

select *
from table (select powermultiset(errata)
 from c
 where code = 'SQL');

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 3, 46, 'Layout illustration'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),
 ERRATUM_T('SQL', 3, 46, 'Layout illustration'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

344

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),
 ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 3, 46, 'Layout illustration'),
 ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),
 ERRATUM_T('SQL', 3, 46, 'Layout illustration'),
 ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

The result contains seven rows because we have three SQL errata; see also Listing 12-17. Why seven

rows for three errata? Well, there are the following possible subsets:

� Three possible subsets with cardinality 1 (rows 1, 2, and 4)

� Three possible subsets with cardinality 2 (rows 3, 5, and 6)

� One possible subset with cardinality 3 (row 7; that is, the nested table itself)

In mathematics, we would also expect the empty set to show up as an element of the powerset.
However, the definition of the POWERMULTISET operator (see Table 12-1) explicitly excludes that subset, by
stating that only nonempty subsets are considered.

Using MULTISET UNION
Listing 12-19 shows how you can use the MULTISET UNION operator to merge two nested tables into a
single one. The query result is manually formatted to enhance readability, allowing you to see that the
result is a single nested table, containing five errata entries. Without manual formatting, the query result
will show up as one unstructured string.

Listing 12-19. MULTISET UNION Example

select c1.errata
 MULTISET UNION
 c2.errata
 as result
from c c1,
 c c2
where c1.code = 'SQL'
and c2.code = 'XML';

RESULT(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.')
 , ERRATUM_T('SQL', 3, 46, 'Layout illustration')

345

CHAPTER 12 � OBJECT-RELATIONAL FEATURES

 , ERRATUM_T('SQL', 5, 1, 'Introduction missing.')
 , ERRATUM_T('XML', 5, 1, 'Introduction missing.')
 , ERRATUM_T('XML', 7, 3, 'Line 5: "succeeds" should read "fails"')
)

Converting Arrays into Nested Tables
For the last example, we revisit the E table with the phone number array (see Listings 12-1 through 12-6).
Listing 12-20 shows how you can use the COLLECT and CAST operators to convert an array into a nested
table. To be able to capture the result, we first create a new numBer_tab_t type using the existing
numBerlist_t type.

Listing 12-20. CAST and COLLECT Example to Convert an Array into a Nested Table

create type number_tab_t
as table of numberlist_t;
/

select cast(collect(numlist) as number_tab_t) as result
from e
where empno in (7839, 7782);

RESULT
--
NUMBER_TAB_T(NUMBERLIST_T('4231', '06-12345678'),
 NUMBERLIST_T('1234', '06-78765432', '029-8765432'))

This final chapter gave you a high-level introduction to the object-relational features of the Oracle

DBMS, focusing on the way you can use those features in SQL. You learned how you can create object
types, and how you can use those types as user-defined datatypes. You also learned about the Oracle
collection types: variable arrays and nested tables. If your tables contain nested tables, you can use SQL
multiset operators on those tables.

If you want to learn more about the object-relational features of Oracle, refer to the Oracle
documentation. Application Developer's Guide: Object-Relational Features is an excellent starting point
for further study in this area.

12.6 Exercises
You can do the following exercises to practice using the object-relational techniques covered in this
chapter. The answers are in Appendix B.

1. The SALGRADES table has two columns to indicate salary ranges:
LOWERLIMIT and UPPERLIMIT. Define your own SALRANGE_T type, based
on a varray of two NUMBER(6,2) values, and use it to create an alternative
SALGRADES2 table.

2. Fill the new SALGRADES2 table with a single INSERT statement, using the
existing SALGRADES table.

346

 CHAPTER 12 � OBJECT-RELATIONAL FEATURES

347

3. Create a table TESTNEST with two columns: column X and column MX. Column X
is NUMBER(1,0) with values 2, 3, 4, ..., 9. Column MX is a nested table, based on a
MX_TAB_T type, containing all multiples of X less than or equal to 20.

4. Use multiset operators to solve the following problems, using the TESTNEST
table you created and populated in the previous exercise:

a. Which rows have a nested table containing value 12?

b. Which nested tables are not a subset of any other subset?

c. Which nested tables have more than 42 different nonempty subsets?

A P P E N D I X A

� � �

The Seven Case Tables

This appendix offers an overview of the seven case tables used throughout this book, in various formats.
Its main purpose is to help you in writing SQL commands and checking your results.

The first section shows an Entity Relationship Modeling (ERM) diagram, indicating the entities of
the underlying data model, including their unique identifiers and their relationships. Then you can find
descriptions of the seven case tables, with names and datatypes of all their columns and short
explanations, when necessary. The next section shows a table diagram, focusing on all primary key and
foreign key constraints. This diagram may be especially helpful when you are writing joins.

The biggest component of this appendix (with the highest level of detail) is a complete listing of the
seven case tables with all their rows. This overview may be useful to check your query results for
correctness.

At the end of this appendix, you will find two alternative representations of the case table data,
showing the table rows in a compact format. The first diagram shows an overview of the 14 employees. It
clearly shows the department populations and the hierarchical (manager/subordinate) relationships.
The second illustration shows a matrix overview of all course offerings, with starting dates, locations,
attendees (A), and trainers (T). Again, these representations may be useful to check your query results for
correctness.

ERM Diagram
The ERM diagram, shown in Figure A-1, shows the seven entities (the rounded-corner boxes) with their
unique identifiers and their mutual relationships.

The ten crow’s feet indicate one-to-many relationships. The diagram shows two types of one-to-
many relationships: three relationships are completely optional (indicated by all dashed lines) and the
remaining ones are mandatory in one direction (indicated by the solid part of the line).

Hash signs (#) in front of an attribute mean that the attribute is part of the unique identifier;
relationship cross-lines indicate that the relationship is part of the unique identifier. Note that the
diagram shows only attributes that are part of unique identifiers, for enhanced readability.

349

APPENDIX A � THE SEVEN CASE TABLES

Figure A-1. ERM diagram of the case entities

You can interpret the relationships in this diagram as follows:

� Every employee has at most one manager (and employees may have multiple
subordinates).

� Every employee belongs to precisely one salary grade and is employed by at most
one department (employees without a department are allowed).

� Each department has precisely one manager (and employees may be manager of
multiple departments).

� Each course offering refers to precisely one existing course, with at most one
employee as trainer.

� Each registration is for precisely one employee and for precisely one course
offering.

� Each history record refers to precisely one employee and precisely one department.

Table Structure Descriptions
This section presents descriptions of the table structures. In the listings, * means NOT NULL and P
means primary key.

EEMPLOYEES: EMPNO N(4) P Unique employee number
 ENAME VC(8) * Last name
 INIT VC(5) * Initials (without punctuation)
 JOB VC(8) Job description
 MGR N(4) Manager (references EMPLOYEES)
 BDATE DATE * Date of birth
 MSAL N(6,2) * Monthly salary (excluding net bonus)

350

 APPENDIX A � THE SEVEN CASE TABLES

 COMM N(6,2) Commission (per year, for sales reps)
 DEPTNO N(2) Department (references DEPARTMENTS)

DEPARTMENTS: DEPTNO N(2) P Unique department number
 DNAME VC(10) * Name of the department
 LOCATION VC(8) * Location (city)
 MGR N(4) Manager (references EMPLOYEES)

SALGRADES: GRADE N(2) P Unique salary grade number
 LOWERLIMIT N(6,2) * Minimum salary for this grade
 UPPERLIMIT N(6,2) * Maximum salary for this grade
 BONUS N(6,2) * Net bonus on top of monthly salary

COURSES: CODE VC(6) P Unique course code
 DESCRIPTION VC(30) * Course description (title)
 CATEGORY C(3) * Course category (GEN,BLD, or DSG)
 DURATION N(2) * Course duration (in days)

OFFERINGS: COURSE VC(6) P Course code (references COURSES)
 BEGINDATE DATE P First course day
 TRAINER N(4) Instructor (references EMPLOYEES)
 LOCATION VC(8) Location of the course offering

REGISTRATIONS: ATTENDEE N(4) P Attendee (references EMPLOYEES)
 COURSE VC(6) P Course code (references OFFERINGS)
 BEGINDATE DATE P First course day (references OFFERINGS)
 EVALUATION N(1) Attendee's opinion (scale 1 - 5)

HISTORY: EMPNO N(4) P Employee (references EMPLOYEES)
 BEGINYEAR N(4) * Year component of BEGINDATE
 BEGINDATE DATE P Begin date interval
 ENDDATE DATE End date interval
 DEPTNO N(2) * Department (references DEPARTMENTS)
 MSAL N(6,2) * Monthly salary during the interval
 COMMENTS VC(60) Free text space

Columns and Foreign Key Constraints
Figure A-2 shows the columns and foreign key constraints in the case tables. The primary key
components have a dark-gray background, and all arrows point from the foreign keys to the
corresponding primary keys. Boxes surrounding multiple columns indicate composite keys.

351

APPENDIX A � THE SEVEN CASE TABLES

Figure A-2. Columns and foreign key constraints

Contents of the Seven Tables
This section lists the contents of each of the seven case tables.

EMPLOYEES

EEMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ---------- ------ ------ ------
 7369 SMITH N TRAINER 7902 17-12-1965 800 20
 7499 ALLEN JAM SALESREP 7698 20-02-1961 1600 300 30
 7521 WARD TF SALESREP 7698 22-02-1962 1250 500 30
 7566 JONES JM MANAGER 7839 02-04-1967 2975 20
 7654 MARTIN P SALESREP 7698 28-09-1956 1250 1400 30
 7698 BLAKE R MANAGER 7839 01-11-1963 2850 30
 7782 CLARK AB MANAGER 7839 09-06-1965 2450 10

352

 APPENDIX A � THE SEVEN CASE TABLES

 7788 SCOTT SCJ TRAINER 7566 26-11-1959 3000 20
 7839 KING CC DIRECTOR 17-11-1952 5000 10
 7844 TURNER JJ SALESREP 7698 28-09-1968 1500 0 30
 7876 ADAMS AA TRAINER 7788 30-12-1966 1100 20
 7900 JONES R ADMIN 7698 03-12-1969 800 30
 7902 FORD MG TRAINER 7566 13-02-1959 3000 20
 7934 MILLER TJA ADMIN 7782 23-01-1962 1300 10

14 rows selected.

DEPARTMENTS

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----
 10 ACCOUNTING NEW YORK 7782
 20 TRAINING DALLAS 7566
 30 SALES CHICAGO 7698
 40 HR BOSTON 7839

SALGRADES

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- ------
 1 700 1200 0
 2 1201 1400 50
 3 1401 2000 100
 4 2001 3000 200
 5 3001 9999 500

COURSES

CODE DESCRIPTION CATEGORY DURATION
------ ---------------------------- -------- --------
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
GEN System generation DSG 4
PMT Process modeling techniques DSG 1
PRO Prototyping DSG 5
RSD Relational system design DSG 2
OAU Oracle for application users GEN 1
SQL Introduction to SQL GEN 4

10 rows selected.

353

APPENDIX A � THE SEVEN CASE TABLES

OFFERINGS

COURSE BEGINDATE TRAINER LOCATION
------ ---------- ------- --------
SQL 12-04-1999 7902 DALLAS
OAU 10-08-1999 7566 CHICAGO
SQL 04-10-1999 7369 SEATTLE
SQL 13-12-1999 7369 DALLAS
JAV 13-12-1999 7566 SEATTLE
JAV 01-02-2000 7876 DALLAS
XML 03-02-2000 7369 DALLAS
PLS 11-09-2000 7788 DALLAS
XML 18-09-2000 SEATTLE
OAU 27-09-2000 7902 DALLAS
ERM 15-01-2001
PRO 19-02-2001 DALLAS
RSD 24-02-2001 7788 CHICAGO

13 rows selected.

REGISTRATIONS

ATTENDEE COURSE BEGINDATE EVALUATION
-------- ------ ---------- ----------
 7499 SQL 12-04-1999 4
 JAV 13-12-1999 2
 XML 03-02-2000 5
 PLS 11-09-2000
 7521 OAU 10-08-1999 4
 7566 JAV 01-02-2000 3
 PLS 11-09-2000
 7698 SQL 12-04-1999 4
 SQL 13-12-1999
 JAV 01-02-2000 5
 7782 JAV 13-12-1999 5
 7788 SQL 04-10-1999
 JAV 13-12-1999 5
 JAV 01-02-2000 4
 7839 SQL 04-10-1999 3
 JAV 13-12-1999 4
 7844 OAU 27-09-2000 5
 7876 SQL 12-04-1999 2
 JAV 13-12-1999 5
 PLS 11-09-2000
 7900 OAU 10-08-1999 4
 XML 03-02-2000 4
 7902 OAU 10-08-1999 5
 SQL 04-10-1999 4

354

 APPENDIX A � THE SEVEN CASE TABLES

 SQL 13-12-1999
 7934 SQL 12-04-1999 5

26 rows selected.

HISTORY (formatted, and without COMMENTS column values)

EMPNO BEGINYEAR BEGINDATE ENDDATE DEPTNO MSAL
----- --------- ---------- ---------- ------ ------
 7369 2000 01-01-2000 01-02-2000 40 950
 2000 01-02-2000 20 800

 7499 1988 01-06-1988 01-07-1989 30 1000
 1989 01-07-1989 01-12-1993 30 1300
 1993 01-12-1993 01-10-1995 30 1500
 1995 01-10-1995 01-11-1999 30 1700
 1999 01-11-1999 30 1600

 7521 1986 01-10-1986 01-08-1987 20 1000
 1987 01-08-1987 01-01-1989 30 1000
 1989 01-01-1989 15-12-1992 30 1150
 1992 15-12-1992 01-10-1994 30 1250
 1994 01-10-1994 01-10-1997 20 1250
 1997 01-10-1997 01-02-2000 30 1300
 2000 01-02-2000 30 1250

 7566 1982 01-01-1982 01-12-1982 20 900
 1982 01-12-1982 15-08-1984 20 950
 1984 15-08-1984 01-01-1986 30 1000
 1986 01-01-1986 01-07-1986 30 1175
 1986 01-07-1986 15-03-1987 10 1175
 1987 15-03-1987 01-04-1987 10 2200
 1987 01-04-1987 01-06-1989 10 2300
 1989 01-06-1989 01-07-1992 40 2300
 1992 01-07-1992 01-11-1992 40 2450
 1992 01-11-1992 01-09-1994 20 2600
 1994 01-09-1994 01-03-1995 20 2550
 1995 01-03-1995 15-10-1999 20 2750
 1999 15-10-1999 20 2975

 7654 1999 01-01-1999 15-10-1999 30 1100
 1999 15-10-1999 30 1250

 7698 1982 01-06-1982 01-01-1983 30 900
 1983 01-01-1983 01-01-1984 30 1275
 1984 01-01-1984 15-04-1985 30 1500
 1985 15-04-1985 01-01-1986 30 2100
 1986 01-01-1986 15-10-1989 30 2200
 1989 15-10-1989 30 2850

 7782 1988 01-07-1988 10 2450

355

APPENDIX A � THE SEVEN CASE TABLES

 7788 1982 01-07-1982 01-01-1983 20 900
 1983 01-01-1983 15-04-1985 20 950
 1985 15-04-1985 01-06-1985 40 950
 1985 01-06-1985 15-04-1986 40 1100
 1986 15-04-1986 01-05-1986 20 1100
 1986 01-05-1986 15-02-1987 20 1800
 1987 15-02-1987 01-12-1989 20 1250
 1989 01-12-1989 15-10-1992 20 1350
 1992 15-10-1992 01-01-1998 20 1400
 1998 01-01-1998 01-01-1999 20 1700
 1999 01-01-1999 01-07-1999 20 1800
 1999 01-07-1999 01-06-2000 20 1800
 2000 01-06-2000 20 3000

 7839 1982 01-01-1982 01-08-1982 30 1000
 1982 01-08-1982 15-05-1984 30 1200
 1984 15-05-1984 01-01-1985 30 1500
 1985 01-01-1985 01-07-1985 30 1750
 1985 01-07-1985 01-11-1985 10 2000
 1985 01-11-1985 01-02-1986 10 2200
 1986 01-02-1986 15-06-1989 10 2500
 1989 15-06-1989 01-12-1993 10 2900
 1993 01-12-1993 01-09-1995 10 3400
 1995 01-09-1995 01-10-1997 10 4200
 1997 01-10-1997 01-10-1998 10 4500
 1998 01-10-1998 01-11-1999 10 4800
 1999 01-11-1999 15-02-2000 10 4900
 2000 15-02-2000 10 5000

 7844 1995 01-05-1995 01-01-1997 30 900
 1998 15-10-1998 01-11-1998 10 1200
 1998 01-11-1998 01-01-2000 30 1400
 2000 01-01-2000 30 1500

 7876 2000 01-01-2000 01-02-2000 20 950
 2000 01-02-2000 20 1100

 7900 2000 01-07-2000 30 800

 7902 1998 01-09-1998 01-10-1998 40 1400
 1998 01-10-1998 15-03-1999 30 1650
 1999 15-03-1999 01-01-2000 30 2500
 2000 01-01-2000 01-08-2000 30 3000
 2000 01-08-2000 20 3000

 7934 1998 01-02-1998 01-05-1998 10 1275
 1998 01-05-1998 01-02-1999 10 1280
 1999 01-02-1999 01-01-2000 10 1290
 2000 01-01-2000 10 1300

79 rows selected.

356

 APPENDIX A � THE SEVEN CASE TABLES

Hierarchical Employees Overview
Figure A-3 illustrates an overview of the employees and management structure. Note that department 40
has no employees.

Figure A-3. Employee overview with management structure

Course Offerings Overview
This section shows an overview of the course offerings. In the listing A stands for Attendee and T stands
for Trainer.

CCourse code: SQL OAU SQL JAV SQL JAV
Begindate: 12/04/99 10/08/99 04/10/99 13/12/99 13/12/99 01/02/00
Location: Dallas Chicago Seattle Seattle Dallas Dallas

Smith, N 7369 . . T . T .
Allen, JAM 7499 A . . A . .
Ward, TF 7521 . A
Jones, JM 7566 . T . T . A
Martin, P 7654
Blake, R 7698 A . . . A A
Clark, AB 7782 . . . A . .
Scott, SCJ 7788 . . A A . A
King, CC 7839 . . A A . .
Turner, JJ 7844
Adams, AA 7876 A . . A . T

357

APPENDIX A � THE SEVEN CASE TABLES

358

Jones, R 7900 . A
Ford, MG 7902 T A A . A .
Miller, TJA 7934 A

Course code: XML PLS ... OAU ... RSD
Begindate: 03/02/00 11/09/00 ... 27/09/00 ... 24/02/01
Location: Dallas Dallas ... Dallas ... Chicago

Smith, N 7369 T
Allen, JAM 7499 A A
Ward, TF 7521
Jones, JM 7566 . A
Martin, P 7654
Blake, R 7698
Clark, AB 7782
Scott, SCJ 7788 . T T
King, CC 7839
Turner, JJ 7844 A
Adams, AA 7876 . A
Jones, R 7900 A
Ford, MG 7902 T
Miller, TJA 7934

Course code: XML ERM PRO Scheduled; however:
Begindate: 18/09/00 15/01/01 19/02/01 - No trainer assigned
Location: Seattle Dallas - No registrations yet

A P P E N D I X B

� � �

Answers to the Exercises

This appendix provides answers and solutions to the chapter-ending exercises presented earlier in this
book. In some cases, we have presented multiple (alternative) solutions for a single exercise. Sometimes
you will see warnings for possible incorrect solutions, in case of known pitfalls.

Of course, it is impossible to list all correct solutions for each exercise; the SQL language is too rich
(or redundant?) for such an attempt. This implies that it is perfectly possible for you to approach and
solve certain exercises in a completely different way. In that case, you can compare your results with the
results listed in this appendix. However, always keep the following warning in mind.

� Caution Although a query may produce the correct result, this doesn’t imply that you wrote the right query.
Incorrect SQL statements sometimes produce the correct results by accident. These are the most treacherous
queries, because they can start producing wrong results at any point in the future, based on the actual contents of
the tables involved.

Some exercises in this book are quite tough. For some of them, it may be challenging to fully
appreciate and understand the given solutions. The reasoning behind including such exercises is the
following: to test your SQL knowledge, you can look at the abundance of relatively simple examples in
Oracle SQL Reference, and you can easily come up with simple SQL experiments yourself.

Chapter 4 Exercises
1. Provide the code and description of all courses with an exact duration of four days.

Solution 4-1.

SQL> select code, description
 2 from courses
 3 where duration = 4;

359

APPENDIX B � ANSWERS TO THE EXERCISES

CODE DESCRIPTION
---- ------------------------------
SQL Introduction to SQL
JAV Java for Oracle developers
GEN System generation

SQL>

2. List all employees, sorted by job, and per job by age (from young to old).

Solution 4-2.

SQL> select *
 2 from employees
 3 order by job, bdate desc;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- -------
 7900 JONES R ADMIN 7698 03-DEC-1969 800 30
 7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10
 7839 KING CC DIRECTOR 17-NOV-1952 5000 10
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
 7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
 7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
 7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
 7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

14 rows selected.

SQL>

3. Which courses have been held in Chicago and/or in Seattle?

Solution 4-3.

SQL> select distinct course
 2 from offerings
 3 where location in ('CHICAGO','SEATTLE');

COURSE

JAV
OAU
RSD

360

 APPENDIX B � ANSWERS TO THE EXERCISES

SQL
XML

SQL>

Notice the DISTINCT keyword in the SELECT clause, to ensure that a course code doesn’t show up

more than once. This way, you get the correct answer to the question.

4. Which employees attended both the Java course and the XML course? (Provide their employee

numbers.)

Solution 4-4.

SQL> select attendee
 2 from registrations
 3 where course = 'JAV'
 4 and attendee in (select attendee
 5 from registrations
 6 where course = 'XML');

ATTENDEE

 7499

SQL>

You might want to add the DISTINCT keyword to the SELECT clause here, too, just as you did in the

previous exercise; otherwise, what happens if someone attends the XML course once and attends the
Java course twice?

This fourth exercise has many different solutions. For example, you can also use two subqueries
instead of one. Obviously, the following solutions with AND or OR at the row level are wrong:

where course = 'JAV' and course = 'XML' -- Wrong: Gives "no rows selected."
where course = 'JAV' or course = 'XML' -- Wrong: Gives too many results.

5. List the names and initials of all employees, except for R. Jones.

Solution 4-5a. Using Parentheses

SQL> select ename, init
 2 from employees
 3 where not (ename = 'JONES' and init = 'R');

ENAME INIT
-------- -----
SMITH N
ALLEN JAM
WARD TF
JONES JM
MARTIN P

361

APPENDIX B � ANSWERS TO THE EXERCISES

BLAKE R
CLARK AB
SCOTT SCJ
KING CC
TURNER JJ
ADAMS AA
FORD MG
MILLER TJA

13 rows selected.

SQL>

Solution 4-5b. Without Parentheses (Note the OR)

SQL> select ename, init
 2 from employees
 3 where ename <> 'JONES' OR init <> 'R';

6. Find the number, job, and date of birth of all trainers and sales representatives born before 1960.

Solution 4-6a. First Solution

SQL> select empno, job, bdate
 2 from employees
 3 where bdate < date '1960-01-01'
 4 and job in ('TRAINER','SALESREP');

 EMPNO JOB BDATE
-------- -------- -----------
 7654 SALESREP 28-SEP-1956
 7788 TRAINER 26-NOV-1959
 7902 TRAINER 13-FEB-1959

SQL>

Here is an alternative solution; note the parentheses to force operator precedence.

Solution 4-6b. Second Solution

SQL> select empno, job, bdate
 2 from employees
 3 where bdate < date '1960-01-01'
 4 and (job = 'TRAINER' or job = 'SALESREP');

7. List the numbers of all employees who do not work for the training department.

362

 APPENDIX B � ANSWERS TO THE EXERCISES

Solution 4-7.

SQL> select empno
 2 from employees
 3 where deptno <> (select deptno
 4 from departments
 5 where dname = 'TRAINING');

 EMPNO

 7499
 7521
 7654
 7698
 7782
 7839
 7844
 7900
 7934

SQL>

� Note This solution assumes that there is only one training department. You could also use NOT IN instead of <>.

8. List the numbers of all employees who did not attend the Java course.

Solution 4-8a. Correct Solution

SQL> select empno
 2 from employees
 3 where empno not in (select attendee
 4 from registrations
 5 where course = 'JAV');

 EMPNO

 7369
 7521
 7654
 7844
 7900
 7902
 7934

SQL>

363

APPENDIX B � ANSWERS TO THE EXERCISES

The following two solutions are wrong.

Solution 4-8b. Wrong Solution 1

SQL> select distinct attendee
 2 from registrations
 3 where attendee not in (select attendee
 4 from registrations
 5 where course = 'JAV');

ATTENDEE

 7521
 7844
 7900
 7902
 7934

SQL>

This result shows only five employees because employees 7369 and 7654 never attended any course;

therefore, their employee numbers do not occur in the REGISTRATIONS table.

Solution 4-8c. Wrong Solution 2

SQL> select distinct attendee attendee
 2 from registrations
 3 where course <> 'JAV';

ATTENDEE

 7499
 7521
 7566
 7698
 7788
 7839
 7844
 7876
 7900
 7902
 7934

11 rows selected.

SQL>

This result shows too many results, because it also shows employees who attended the Java course

and at least one non-Java course; for example, employee 7566 attended the Java and the PL/SQL
courses.

364

 APPENDIX B � ANSWERS TO THE EXERCISES

9a. Which employees have subordinates?

Solution 4-9a. Employees with Subordinates

SQL> select empno, ename, init
 2 from employees
 3 where empno in (select mgr
 4 from employees);

 EMPNO ENAME INIT
-------- -------- -----
 7566 JONES JM
 7698 BLAKE R
 7782 CLARK AB
 7788 SCOTT SCJ
 7839 KING CC
 7902 FORD MG

SQL>

9b. Which employees don’t have subordinates?

Solution 4-9b. Employees Without Subordinates

SQL> select empno, ename, init
 2 from employees
 3 where empno not in (select mgr
 4 from employees
 5 where mgr is not null);

 EMPNO ENAME INIT
-------- -------- -----
 7369 SMITH N
 7499 ALLEN JAM
 7521 WARD TF
 7654 MARTIN P
 7844 TURNER JJ
 7876 ADAMS AA
 7900 JONES R
 7934 MILLER TJA

SQL>

� Note The WHERE clause on the fifth line of Solution 4-9b is necessary for a correct result, assuming that null
values in the MGR column always mean "not applicable." See also Solution 4-12..

365

APPENDIX B � ANSWERS TO THE EXERCISES

10. Produce an overview of all general course offerings (course category GEN) in 1999.

Solution 4-10.

SQL> select *
 2 from offerings
 3 where begindate between date '1999-01-01'
 4 and date '1999-12-31'
 5 and course in (select code
 6 from courses
 7 where category = 'GEN');

COURSE BEGINDATE TRAINER LOCATION
------ ----------- -------- --------
OAU 10-AUG-1999 7566 CHICAGO
SQL 12-APR-1999 7902 DALLAS
SQL 04-OCT-1999 7369 SEATTLE
SQL 13-DEC-1999 7369 DALLAS

SQL>

You can solve the “1999 condition” in many ways by using SQL functions (see Chapter 5). Here are

some valid alternatives for lines 3 and 4:

where to_char(begindate,'YYYY') = '1999'
where extract(year from begindate) = 1999
where begindate between to_date('01-JAN-1999','DD-MON-YYYY')
 and to_date('31-DEC-1999','DD-MON-YYYY')

� Caution Avoid using column names as function arguments if it is possible to express the same functional
result without having to do that, because it may have a negative impact on performance. In this case, Solution 4-
10 and the last alternative are fine; the first two alternatives should be avoided.

11. Provide the name and initials of all employees who have ever attended a course taught by N.
Smith. Hint: Use subqueries, and work “inside out” toward the result; that is, retrieve the employee
number of N. Smith, search for the codes of all courses he ever taught, and so on.

Solution 4-11.

SQL> select ename, init
 2 from employees
 3 where empno in
 4 (select attendee
 5 from registrations
 6 where (course, begindate) in

366

 APPENDIX B � ANSWERS TO THE EXERCISES

 7 (select course, begindate
 8 from offerings
 9 where trainer =
 10 (select empno
 11 from employees
 12 where ename = 'SMITH'
 13 and init = 'N'
 14)
 15)
 16);

ENAME INIT
-------- -----
ALLEN JAM
BLAKE R
SCOTT SCJ
KING CC
JONES R
FORD MG

SQL>

12. How could you redesign the EMPLOYEES table to avoid the problem that the COMM column contains

null values meaning not applicable?

Answer: By dropping that column from the EMPLOYEES table and by creating a separate SALESREPS

table, with the following rows:

 EMPNO COMM
-------- --------
 7499 300
 7521 500
 7654 1400
 7844 0

In this table, the EMPNO column is not only the primary key, but it is also a foreign key referring to the

EMPLOYEES table.

13. In Section 4.9, you saw the following statement: In SQL, NOT is not “not.” What is this statement

trying to say?

Answer: In three-valued logic, the NOT operator is not the complement operator anymore:

NOT TRUE is equivalent with FALSE
not TRUE is equivalent with FALSE OR UNKNOWN

14. Referring to the brain-twister at the end of Section 4.9, what is the explanation of the result “no

rows selected” in Listing 4-44?

367

APPENDIX B � ANSWERS TO THE EXERCISES

Answer: The following WHERE clause:

 2 where evaluation not in (1,2,3,NULL)

is logically equivalent with the following “iterated AND” condition:

 2 where evaluation <> 1
 3 AND evaluation <> 2
 4 AND evaluation <> 3
 5 AND evaluation <> NULL

If you consider a row with an EVALUATION value of 1, 2, or 3, it is obvious that out of the first three

conditions, one of them returns FALSE, and the other two return TRUE. Therefore, the complete WHERE
clause returns FALSE.

If the EVALUATION value is NULL, all four conditions return UNKNOWN. Therefore, the end result is also
UNKNOWN. So far, there are no surprises.

If the EVALUATION value is 4 or 5 (the remaining two allowed values), the first three conditions all
return TRUE, but the last condition returns UNKNOWN. So you have the following expression:

(TRUE) and (TRUE) and (TRUE) and (UNKNOWN)

This is logically equivalent with UNKNOWN, so the complete WHERE clause returns UNKNOWN.

15. At the end of Section 4.5, you saw the following statement.
The following two queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R')
select * from employees where ename <> 'BLAKE' OR init <> 'R'

Prove this, using a truth table.

Answer: First, we assign names to the two WHERE clause components.

� Let’s represent ename = 'BLAKE' with P.

� Let’s represent init = 'R' with Q.

Then we must show that NOT(P AND Q) and NOT(P) OR NOT(Q) are logically equivalent. The truth tables
for both expressions look as follows:

P Q P AND Q -- NOT(P AND Q)

TRUE TRUE TRUE -- FALSE

TRUE FALSE FALSE -- TRUE

TRUE UNK UNK -- UNK

FALSE TRUE FALSE -- TRUE

368

 APPENDIX B � ANSWERS TO THE EXERCISES

FALSE FALSE FALSE -- TRUE

FALSE UNK FALSE -- TRUE

UNK TRUE UNK -- UNK

UNK FALSE FALSE -- TRUE

UNK UNK UNK -- UNK

P Q NOT(P) NOT(Q) NOT(P) OR NOT(Q)

TRUE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE TRUE TRUE

TRUE UNK FALSE UNK UNK

FALSE TRUE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE TRUE

FALSE UNK TRUE UNK TRUE

UNK TRUE UNK FALSE UNK

UNK FALSE UNK TRUE TRUE

UNK UNK UNK UNK UNK

As you can see, the last columns in the two truth tables are identical. This proves that the two

expressions are logically equivalent.

Chapter 5 Exercises
1. For all employees, provide their last name, a comma, followed by their initials.

Solution 5-1.

SQL> select ename ||', '||init
 2 as full_name
 3 from employees;

369

APPENDIX B � ANSWERS TO THE EXERCISES

FULL_NAME

SMITH, N
ALLEN, JAM
WARD, TF
JONES, JM
MARTIN, P
BLAKE, R
CLARK, AB
SCOTT, SCJ
KING, CC
TURNER, JJ
ADAMS, AA
JONES, R
FORD, MG
MILLER, TJA

14 rows selected.

SQL>

2. For all employees, list their last name and date of birth, in a format such as April 2nd, 1967.

Solution 5-2.

SQL> select ename
 2 , to_char(bdate,'fmMonth ddth, yyyy')
 3 from employees;

ENAME TO_CHAR(BDATE,'FMMON
-------- --------------------
SMITH December 17th, 1965
ALLEN February 20th, 1961
WARD February 22nd, 1962
JONES April 2nd, 1967
MARTIN September 28th, 1956
BLAKE November 1st, 1963
CLARK June 9th, 1965
SCOTT November 26th, 1959
KING November 17th, 1952
TURNER September 28th, 1968
ADAMS December 30th, 1966
JONES December 3rd, 1969
FORD February 13th, 1959
MILLER January 23rd, 1962

14 rows selected.

SQL>

370

 APPENDIX B � ANSWERS TO THE EXERCISES

� Note You can change the language to display the month names in this result with the NLS_LANGUAGE
parameter setting, as in this example:

SQL> alter session set nls_language=dutch;

Sessie is gewijzigd.

SQL>

3a. On which day are (or were) you exactly 10,000 days old?

Solution 5-3a.

SQL> select date '1954-08-11' + 10000
 2 as "10,000 days"
 3 from dual;

10,000 days

27-DEC-1981

SQL>

3b. On which day of the week is (was) this?

Solution 5-3b.

SQL> select to_char(date '1954-08-11' + 10000,'Day')
 2 as "On a:"
 3 from dual;

On a:

Sunday

SQL>

4. Rewrite the example in Listing 5-23 using the NVL2 function.

Solution 5-4.

SQL> select ename, msal, comm
 2 , nvl2(comm,12*msal+comm,12*msal) as yearsal
 3 from employees
 4 where ename like '%T%';

371

APPENDIX B � ANSWERS TO THE EXERCISES

ENAME MSAL COMM YEARSAL
-------- -------- -------- --------
SMITH 800 9600
MARTIN 1250 1400 16400
SCOTT 3000 36000
TURNER 1500 0 18000

SQL>

5. Rewrite the example in Listing 5-24 to remove the DECODE functions using CASE expressions, both

in the SELECT clause and in the ORDER BY clause.

Solution 5-5.

SQL> select job, ename
 2 , case
 3 when msal <= 2500
 4 then 'cheap'
 5 else 'expensive'
 6 end as class
 7 from employees
 8 where bdate < date '1964-01-01'
 9 order by case job
 10 when 'DIRECTOR' then 1
 11 when 'MANAGER' then 2
 12 else 3
 13 end;

JOB ENAME CLASS
-------- -------- ---------
DIRECTOR KING expensive
MANAGER BLAKE expensive
SALESREP ALLEN cheap
SALESREP WARD cheap
ADMIN MILLER cheap
TRAINER FORD expensive
TRAINER SCOTT expensive
SALESREP MARTIN cheap

SQL>

� Note The TO_DATE function expression is also replaced by a DATE literal.

372

 APPENDIX B � ANSWERS TO THE EXERCISES

6. Rewrite the example in Listing 5-20 using DATE and INTERVAL constants, in such a way that they
become independent of the NLS_DATE_FORMAT setting.

Solution 5-6.

SQL> select date '1996-01-29' + interval '1' month as col_1
 2 , date '1997-01-29' + interval '1' month as col_2
 3 , date '1997-08-11' - interval '3' month as col_3
 4 from dual;
, date '1997-01-29' + interval '1' month as col_2
 *
ERROR at line 2:
ORA-01839: date not valid for month specified

SQL> select date '1996-01-29' + interval '1' month as col_1
 2 , date '1997-01-28' + interval '1' month as col_2
 3 , date '1997-08-11' - interval '3' month as col_3
 4 from dual;

COL_1 COL_2 COL_3
----------- ----------- ---------
29-FEB-1996 28-FEB-1997 11-MAY-1997

SQL>

As you can see, January 29 plus a month causes problems for 1997, which is not a leap year. If you

change 1997-01-29 to 1997-01-28 on the second line, there is no longer a problem.

7. Investigate the difference between the date formats WW and IW (week number and ISO week

number) using an arbitrary date, and explain your findings.

Solution 5-7.

SQL> 1 select date '2005-01-01' as input_date
 2 , to_char(date '2005-01-01', 'ww') as ww
 3 , to_char(date '2005-01-01', 'iw') as iw
 4* from dual

INPUT_DATE WW IW
----------- -- --
01-JAN-2005 06 07

SQL>

If you don’t get different results, try different dates within the same week. The difference between WW

and IW has to do with the different definitions of week numbers. The WW format starts week number 1 on
January 1, regardless of which day of the week that is. The ISO standard uses different rules: an ISO week
always starts on a Monday. The rules around the new year are as follows: if January 1 is a Friday, a
Saturday, or a Sunday, the week belongs to the previous year; otherwise, the week fully belongs to the
new year. Similar rules apply for the ISO year numbering.

373

APPENDIX B � ANSWERS TO THE EXERCISES

8. Look at Listing 5-15, where we use the REGEXP_INSTR function to search for words. Rewrite this
query using REGEXP_LIKE. Hint: You can use {n,} to express “at least n times.”

Solution 5-8a. First Solution

SQL> select comments
 2 from history
 3 where regexp_like(comments, '([^]+){8,}');

COMMENTS
--
Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...
Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

SQL>

You could make your solution more readable by using character classes.

Solution 5-8b. Second Solution, Using Character Classes

SQL> select comments
 2 from history
 3 where regexp_like(comments, '([[:alnum:]+[:punct:]]+[[:space:]]+){8,}');

COMMENTS
--
Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...
Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

SQL>

Chapter 7 Exercises

1. Listing 7-5 defines the constraint E_SALES_CHK in a rather cryptic way. Formulate the same

constraint without using DECODE and NVL2.

Solution 7-1a. Solution 1

check ((job = 'SALESREP' and comm is not null) or
 (job <>'SALESREP' and comm is null))

374

 APPENDIX B � ANSWERS TO THE EXERCISES

Solution 7-1b. Solution 2

check ((job = 'SALESREP' or comm is null) and not
 (job = 'SALESREP' and comm is null))

2. Why do you think the constraint E_DEPT_FK (in Listing 7-7) is created with a separate ALTER TABLE

command?
Answer: You must define this constraint with an ALTER TABLE command because you have a

“chicken/egg” problem. A foreign key constraint can refer to only an existing table, and you have two
tables (EMPLOYEES and DEPARTMENTS) referring to each other.

3. Although this is not covered in this chapter, try to come up with an explanation of the following

phenomenon: when using sequences, you cannot use the pseudo column CURRVAL in your session
without first calling the pseudo column NEXTVAL.

Answer: In a multiuser environment, multiple database users can use the same sequence generator
at the same time. Therefore, they will be using different CURRVAL values at the same time; that is, there is
no database-wide “current” CURRVAL value. On the other hand, NEXTVAL is always defined as the next
available sequence value.

4. Why is it better to use sequences in a multiuser environment, as opposed to maintaining a

secondary table with the last/current sequence values?
Answer: A secondary table will become a performance bottleneck. Each update to a sequence value

will lock the corresponding row. The next update can take place only after the first transaction has
committed. In other words, all transactions needing a sequence value will be serialized. Sequences are
better because they don’t have this problem. With sequences, multiple transactions can be served
simultaneously and independently.

5. How is it possible that the EVALUATION column of the REGISTRATIONS table accepts null values, in

spite of the constraint R_EVAL_CHK (see Listing 7-11)?
Answer: This is caused by three-valued logic. A CHECK constraint condition can result in TRUE, FALSE,

or UNKNOWN. Moreover, a CHECK constraint reports a violation only if its corresponding condition returns
FALSE.

� Note This implies that you always need an explicit NOT NULL constraint if you want your columns to be
mandatory; a CHECK constraint as shown in Listing 7-11 is not enough.

6. If you define a PRIMARY KEY or UNIQUE constraint, the Oracle DBMS normally creates a unique index
under the covers (if none of the existing indexes can be used) to check the constraint. Investigate and
explain what happens if you define such a constraint as DEFERRABLE.

Answer: If you define PRIMARY KEY or UNIQUE constraints as DEFERRABLE, the Oracle DBMS creates
nonunique indexes. This is because indexes must be maintained immediately. Therefore, indexes for
deferrable constraints must allow for temporary duplicate values until the end of your transactions.

7. You can use function-based indexes to implement “conditional uniqueness” constraints. Create a

unique function-based index on the REGISTRATIONS table to check the following constraint: employees

375

APPENDIX B � ANSWERS TO THE EXERCISES

are allowed to attend the OAU course only once. They may attend other courses as many times as they
like. Test your solution with the following command (it should fail):

SQL> insert into registrations values (7900,'OAU',trunc(sysdate),null);

Hint: You can use a CASE expression in the index expression.

Solution 7-7.

SQL> create unique index oau_reg on registrations
 2 (case course when 'OAU' then attendee else null end
 3 , case course when 'OAU' then course else null end);

Index created.

SQL>

The trick is to create a function-based index on (ATTENDEE, COURSE) combinations, while ignoring all

non-OAU course registrations.
Here’s the test:

SQL> insert into registrations values (7900,'OAU',sysdate,null);
insert into registrations values (7900,'OAU',sysdate,null)
*
ERROR at line 1:
ORA-00001: unique constraint (BOOK.OAU_REG) violated

SQL>

� Note Notice the Oracle error message number for the unique constraint violation: 00001. This must have been
one of the first error messages implemented in Oracle!

Chapter 8 Exercises
1. Produce an overview of all course offerings. Provide the course code, begin date, course duration,

and name of the trainer.

Solution 8-1a. First Solution

SQL> select c.code
 2 , o.begindate
 3 , c.duration
 4 , e.ename as trainer
 5 from employees e
 6 , courses c

376

 APPENDIX B � ANSWERS TO THE EXERCISES

 7 , offerings o
 8 where o.trainer = e.empno
 9 and o.course = c.code;

CODE BEGINDATE DURATION TRAINER
---- ----------- -------- --------
XML 03-FEB-2000 2 SMITH
SQL 13-DEC-1999 4 SMITH
SQL 04-OCT-1999 4 SMITH
OAU 10-AUG-1999 1 JONES
JAV 13-DEC-1999 4 JONES
RSD 24-FEB-2001 2 SCOTT
PLS 11-SEP-2000 1 SCOTT
JAV 01-FEB-2000 4 ADAMS
SQL 12-APR-1999 4 FORD
OAU 27-SEP-2000 1 FORD

10 rows selected.

SQL>

If you also want to see all course offerings with an unknown trainer, you can change the solution as

follows:

Solution 8-1b. Second Solution, Also Showing Course Offerings with Unknown Trainers

SQL> select DISTINCT c.code
 2 , o.begindate
 3 , c.duration
 4 , case when o.trainer is not null
 5 then e.ename
 6 else null
 7 end as trainer
 8 from employees e
 9 , courses c
 10 , offerings o
 11 where coalesce(o.trainer,-1) in (e.empno,-1)
 12 and o.course = c.code;

CODE BEGINDATE DURATION TRAINER
---- ----------- -------- --------
ERM 15-JAN-2001 3
JAV 13-DEC-1999 4 JONES
JAV 01-FEB-2000 4 ADAMS
OAU 10-AUG-1999 1 JONES
OAU 27-SEP-2000 1 FORD
PLS 11-SEP-2000 1 SCOTT
PRO 19-FEB-2001 5
RSD 24-FEB-2001 2 SCOTT
SQL 12-APR-1999 4 FORD
SQL 04-OCT-1999 4 SMITH

377

APPENDIX B � ANSWERS TO THE EXERCISES

SQL 13-DEC-1999 4 SMITH
XML 03-FEB-2000 2 SMITH
XML 18-SEP-2000 2

13 rows selected.

SQL>

Line 11 might look curious at first sight. It “relaxes” the join between OFFERINGS and EMPLOYEES a bit.

Instead of –1, you can use any other arbitrary numeric value, as long as it could not be an existing
employee number. Note also that this trick makes the addition of DISTINCT necessary.

2. Provide an overview, in two columns, showing the names of all employees who ever attended an

SQL course, with the name of the trainer.

Solution 8-2.

SQL> select a.ename as attendee
 2 , t.ename as trainer
 3 from employees t
 4 join
 5 offerings o on (o.trainer = t.empno)
 6 join
 7 registrations r using (course, begindate)
 8 join
 9 employees a on (r.attendee = a.empno)
 10 where course = 'SQL';

ATTENDEE TRAINER
-------- --------
ALLEN FORD
BLAKE FORD
ADAMS FORD
MILLER FORD
SCOTT SMITH
KING SMITH
FORD SMITH
BLAKE SMITH
FORD SMITH

SQL>

This solution uses the new ANSI/ISO join syntax, just for a change.

3. For all employees, list their name, initials, and yearly salary (including bonus and commission).

378

 APPENDIX B � ANSWERS TO THE EXERCISES

Solution 8-3.

SQL> select e.ename, e.init
 2 , 12 * (e.msal + s.bonus)
 3 + nvl(e.comm,0) as yearsal
 4 from employees e
 5 join
 6 salgrades s
 7 on (e.msal between s.lowerlimit
 8 and s.upperlimit);

ENAME INIT YEARSAL
-------- ----- --------
SMITH N 9600
JONES R 9600
ADAMS AA 13200
WARD TF 16100
MARTIN P 17000
MILLER TJA 16200
TURNER JJ 19200
ALLEN JAM 20700
CLARK AB 31800
BLAKE R 36600
JONES JM 38100
SCOTT SCJ 38400
FORD MG 38400
KING CC 66000

14 rows selected.

SQL>

4. For all course offerings, list the course code, begin date, and number of registrations. Sort your

results on the number of registrations, from high to low.

Solution 8-4.

SQL> select course
 2 , begindate
 3 , count(r.attendee) as reg_count
 4 from offerings o
 5 left outer join
 6 registrations r
 7 using (course, begindate)
 8 group by course
 9 , begindate
 10 order by reg_count desc;

379

APPENDIX B � ANSWERS TO THE EXERCISES

COURSE BEGINDATE REG_COUNT
------ ----------- ---------
JAV 13-DEC-1999 5
SQL 12-APR-1999 4
JAV 01-FEB-2000 3
OAU 10-AUG-1999 3
PLS 11-SEP-2000 3
SQL 04-OCT-1999 3
SQL 13-DEC-1999 2
XML 03-FEB-2000 2
OAU 27-SEP-2000 1
ERM 15-JAN-2001 0
XML 18-SEP-2000 0
PRO 19-FEB-2001 0
RSD 24-FEB-2001 0

13 rows selected.

SQL>

You need an outer join here, to see all courses without registrations in the result as well. Note also

that COUNT(*) in the third line would give you wrong results.

5. List the course code, begin date, and the number of registrations for all course offerings in 1999

with at least three registrations.

Solution 8-5.

SQL> select course
 2 , begindate
 3 , count(*)
 4 from registrations
 5 where extract(year from begindate) = 1999
 6 group by course
 7 , begindate
 8 having count(*) >= 3;

COURSE BEGINDATE COUNT(*)
------ ----------- --------
JAV 13-DEC-1999 5
OAU 10-AUG-1999 3
SQL 12-APR-1999 4
SQL 04-OCT-1999 3

SQL>

In this case, accessing the REGISTRATIONS table is enough, because you are not interested in offerings

without registrations. The solution would have been more complicated if the question were “... with
fewer than three registrations,” because zero is also less than three.

380

 APPENDIX B � ANSWERS TO THE EXERCISES

6. Provide the employee numbers of all employees who ever taught a course as a trainer, but never
attended a course as an attendee.

Solution 8-6a. First Solution

SQL> select trainer from offerings
 2 minus
 3 select attendee from registrations;

 TRAINER

 7369

SQL>

This solution looks good; however, if you look very carefully, the solution is suspect. You don’t see it

immediately, but this result doesn’t contain a single row, but two rows, as becomes apparent if you set
FEEDBACK to 1:

SQL> set feedback 1
SQL> /

 TRAINER

 7369

2 rows selected.

SQL>

Because a null value obviously doesn’t represent a valid trainer, you need to exclude null values in

the TRAINER column explicitly.

Solution 8-6b. Second Solution, Excluding Null Values

SQL> select trainer from offerings
 2 where trainer is not null
 3 minus
 4 select attendee from registrations;

 TRAINER

 7369

1 row selected.

SQL>

381

APPENDIX B � ANSWERS TO THE EXERCISES

7. Which employees attended a specific course more than once?

Solution 8-7.

SQL> select attendee,course
 2 from registrations
 3 group by attendee,course
 4 having count(*) > 1 ;

ATTENDEE COURSE
-------- ------
 7698 SQL
 7788 JAV
 7902 SQL

SQL>

8. For all trainers, provide their name and initials, the number of courses they taught, the total

number of students they had in their classes, and the average evaluation rating. Round the evaluation
ratings to one decimal.

Solution 8-8.

SQL> select t.init, t.ename
 2 , count(distinct begindate) courses
 3 , count(*) attendees
 4 , round(avg(evaluation),1) evaluation
 5 from employees t
 6 , registrations r
 7 join
 8 offerings o
 9 using (course, begindate)
 10 where t.empno = o.trainer
 11 group by t.init, t.ename;

INIT ENAME COURSES ATTENDEES EVALUATION
----- -------- -------- --------- ----------
N SMITH 3 7 4
AA ADAMS 1 3 4
JM JONES 2 8 4.3
MG FORD 2 5 4
SCJ SCOTT 1 3

SQL>

� Note While counting courses, this solution assumes that trainers cannot teach more than one course on the
same day.

382

 APPENDIX B � ANSWERS TO THE EXERCISES

9. List the name and initials of all trainers who ever had their own manager as a student in a general
course (category GEN).

Solution 8-9.

SQL> select distinct e.ename, e.init
 2 from employees e
 3 , courses c
 4 , offerings o
 5 , registrations r
 6 where e.empno = o.trainer
 7 and e.mgr = r.attendee
 8 and c.code = o.course
 9 and o.course = r.course
 10 and o.begindate = r.begindate
 11 and c.category = 'GEN';

ENAME INIT
-------- -----
SMITH N

SQL>

10. Did we ever use two classrooms at the same time in the same course location?

Solution 8-10.

SQL> select o1.location
 2 , o1.begindate, o1.course, c1.duration
 3 , o2.begindate, o2.course
 4 from offerings o1
 5 , offerings o2
 6 , courses c1
 7 where o1.location = o2.location
 8 and (o1.begindate < o2.begindate or
 9 o1.course <> o2.course)
 10 and o1.course = c1.code
 11 and o2.begindate between o1.begindate
 12 and o1.begindate + c1.duration;

LOCATION BEGINDATE COUR DURATION BEGINDATE COURSE
-------- ----------- ---- -------- ----------- ------
DALLAS 01-FEB-2000 JAV 4 03-FEB-2000 XML

SQL>

The solution searches for two different course offerings (see lines 8 and 9) at the same location (see

line 7) overlapping each other (see lines 11 and 12). Apparently, the Java course starting February 1,
2000, in Dallas overlaps with the XML course starting two days later (note that the Java course takes four
days).

383

APPENDIX B � ANSWERS TO THE EXERCISES

11. Produce a matrix report (one column per department, one row for each job) where each cell
shows the number of employees for a specific department and a specific job. In a single SQL statement,
it is impossible to dynamically derive the number of columns needed, so you may assume you have
three departments only: 10, 20, and 30.

Solution 8-11.

SQL> select job
 2 , count(case
 3 when deptno <> 10
 4 then null
 5 else deptno
 6 end) as dept_10
 7 , sum(case deptno
 8 when 20
 9 then 1
 10 else 0
 11 end) as dept_20
 12 , sum(decode(deptno,30,1,0)) as dept_30
 13 from employees
 14 group by job;

JOB DEPT_10 DEPT_20 DEPT_30
-------- -------- -------- --------
ADMIN 1 0 1
DIRECTOR 1 0 0
MANAGER 1 1 1
SALESREP 0 0 4
TRAINER 0 4 0

SQL>

This solution shows three different valid methods to count the employees: for department 10, it uses

a searched CASE expression; for department 20, it uses a simple CASE expression and a SUM function; and
for department 30, it uses the Oracle DECODE function, which is essentially the same solution as for
department 20.

12. Listing 8-26 produces information about all departments with more than four employees. How

can you change the query to show information about all departments with fewer than four employees?

Solution 8-12a. Incorrect Solution

SQL> select deptno, count(empno)
 2 from employees
 3 group by deptno
 4 having count(*) < 4;

384

 APPENDIX B � ANSWERS TO THE EXERCISES

 DEPTNO COUNT(EMPNO)
-------- ------------
 10 3

SQL>

This solution is not correct, because it does not show departments with zero employees. You can fix

this in several ways; for example, by using an outer join.

Solution 8-12b. Correct Solution

SQL> select deptno, count(empno)
 2 from departments
 3 left outer join
 4 employees
 5 using (deptno)
 6 group by deptno
 7 having count(*) < 4;

 DEPTNO COUNT(EMPNO)
-------- ------------
 10 3
 40 0

SQL>

13. Look at Listings 8-44 and 8-45. Are those two queries logically equivalent? Investigate the two

queries and explain the differences, if any.

Solution 8-13. Making the Difference Visible with FEEDBACK

SQL> set feedback 1

SQL> select o.location from offerings o
 2 MINUS
 3 select d.location from departments d;

LOCATION

SEATTLE

2 rows selected.

SQL> select DISTINCT o.location
 2 from offerings o
 3 where o.location not in
 4 (select d.location
 5 from departments d);

385

APPENDIX B � ANSWERS TO THE EXERCISES

LOCATION

SEATTLE

1 row selected.

SQL>

If you change the SQL*Plus FEEDBACK setting to 1, the difference becomes apparent.
We have one course offering with unknown location, and (as you know by now) you cannot be too

careful with null values. The first query produces two rows. The null value appears in the result because
the MINUS operator does not remove the null value. However, if the second query checks the ERM course
offering (with the null value) the WHERE clause becomes:

 ... where NULL not in ('NEW YORK','DALLAS','CHICAGO','BOSTON');

This WHERE clause returns UNKNOWN. Therefore, the row does not pass the WHERE clause filter, and as a

consequence the result contains only one row.

Chapter 9 Exercises
1. It is normal practice that (junior) trainers always attend a course taught by a senior colleague

before teaching that course themselves. For which trainer/course combinations did this happen?

Solution 9-1.

SQL> select o.course, o.trainer
 2 from offerings o
 3 where exists
 4 (select r.*
 5 from registrations r
 6 where r.attendee = o.trainer
 7 and r.course = o.course
 8 and r.begindate < o.begindate)
 9 and not exists
 10 (select fo.*
 11 from offerings fo
 12 where fo.course = o.course
 13 and fo.trainer = o.trainer
 14 and fo.begindate < o.begindate);

COURSE TRAINER
------ --------
JAV 7876
OAU 7902

SQL>

386

 APPENDIX B � ANSWERS TO THE EXERCISES

This exercise is not an easy one. You can solve it in many ways. The solution shown here uses the
EXISTS and the NOT EXISTS operators. You can read it as follows:

“Search course offerings for which (1) the trainer attended an earlier offering of the same course as a
student, and for which (2) the trainer is teaching that course for the first time.”

� Note The second condition is necessary, because otherwise you would also get “teach/attend/teach”
combinations.

2. Actually, if the junior trainer teaches a course for the first time, that senior colleague (see the
previous exercise) sits in the back of the classroom in a supporting role. Try to find these
course/junior/senior combinations.

Solution 9-2.

SQL> select o1.course
 2 , o1.trainer as senior
 3 , o2.trainer as junior
 4 from offerings o1
 5 , registrations r1
 6 , offerings o2
 7 , registrations r2
 8 where o1.course = r1.course -- join r1 with o1
 9 and o1.begindate = r1.begindate
 10 and o2.course = r2.course -- join r2 with o2
 11 and o2.begindate = r2.begindate
 12 and o1.course = o2.course -- o1 and o2 same course
 13 and o1.begindate < o2.begindate -- o1 earlier than o2
 14 and o1.trainer = r2.attendee -- trainer o1 attends o2
 15 and o2.trainer = r1.attendee -- trainer o2 attends o1
 16 ;

COURSE SENIOR JUNIOR
------ -------- --------
JAV 7566 7876

SQL>

This solution uses a join, for a change.

3. Which employees never taught a course?

Solution 9-3a. Using NOT IN

SQL> select e.*
 2 from employees e
 3 where e.empno not in (select o.trainer

387

APPENDIX B � ANSWERS TO THE EXERCISES

 4 from offerings o);

no rows selected

SQL>

Solution 9-3b. Using NOT EXISTS

SQL> select e.*
 2 from employees e
 3 where not exists (select o.trainer
 4 from offerings o
 5 where o.trainer = e.empno);

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
 7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
 7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
 7839 KING CC DIRECTOR 17-NOV-1952 5000 10
 7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
 7900 JONES R ADMIN 7698 03-DEC-1969 800 30
 7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

9 rows selected.

SQL>

At first sight, you might think that both of these solutions are correct. However, the results are

different. Now, which one is the correct solution?
You can come up with convincing arguments for both solutions. Note that you have three course

offerings with a null value in the TRAINER column.

� If you interpret these null values as “trainer unknown,” you can never say with
certainty that an employee never taught a course.

� The second query obviously treats the null values differently. Its result (with nine
employees) is what you probably expected.

The different results are not caused by an SQL bug. You simply have two SQL statements with
different results, so they must have a different meaning. In such cases, you must revisit the query in
natural language and try to formulate it more precisely in order to eliminate any ambiguities.

Last but not least, our OFFERINGS table happens to contain only data from the past. If you want a
correct answer to this exercise under all circumstances, you should also add a condition to check the
course dates against SYSDATE.

4. Which employees attended all build courses (category BLD)? They are entitled to get a discount on

the next course they attend.

388

 APPENDIX B � ANSWERS TO THE EXERCISES

Solution 9-4a. Using NOT EXISTS Twice

SQL> select e.empno, e.ename, e.init
 2 from employees e
 3 where not exists
 4 (select c.*
 5 from courses c
 6 where c.category = 'BLD'
 7 and not exists
 8 (select r.*
 9 from registrations r
 10 where r.course = c.code
 11 and r.attendee = e.empno
 12)
 13);

 EMPNO ENAME INIT
-------- -------- -----
 7499 ALLEN JAM

SQL>

Solution 9-4b. Using GROUP BY

SQL> select e.empno, e.ename, e.init
 2 from registrations r
 3 join
 4 courses c on (r.course = c.code)
 5 join
 6 employees e on (r.attendee = e.empno)
 7 where c.category = 'BLD'
 8 group by e.empno, e.ename, e.init
 9 having count(distinct r.course)
 10 = (select count(*)
 11 from courses
 12 where category = 'BLD');

 EMPNO ENAME INIT
-------- -------- -----
 7499 ALLEN JAM

SQL>

This is not an easy exercise. Both of these solutions are correct.

5. Provide a list of all employees having the same monthly salary and commission as (at least) one

employee of department 30. You are interested in only employees from other departments.

389

APPENDIX B � ANSWERS TO THE EXERCISES

Solution 9-5.

SQL> select e.ename
 2 , e.msal
 3 , e.comm
 4 from employees e
 5 where e.deptno <> 30
 6 and (e.msal,coalesce(e.comm,-1)) in
 7 (select x.msal,coalesce(x.comm,-1)
 8 from employees x
 9 where x.deptno = 30);

ENAME MSAL COMM
-------- -------- --------
SMITH 800

SQL>

Note that this solution uses the COALESCE function, which you need to make comparisons with null

values evaluate to true, in this case. The solution uses the value –1 based on the reasonable assumption
that the commission column never contains negative values. However, if you check the definition of the
EMPLOYEES table, you will see that there actually is no constraint to allow only nonnegative commission
values. It looks like you found a possible data model enhancement here. Such a constraint would make
your solution—using the negative value in the COALESCE function—correct under all circumstances.

6. Look again at Listings 9-4 and 9-5. Are they really logically equivalent? Just for testing purposes,

search on a nonexisting job and execute both queries again. Explain the results.

Solution 9-6.

SQL> select e.empno, e.ename, e.job, e.msal
 2 from employees e
 3 where e.msal > ALL (select b.msal
 4 from employees b
 5 where b.job = 'BARTENDER');

 EMPNO ENAME JOB MSAL
-------- -------- -------- --------
 7369 SMITH TRAINER 800
 7499 ALLEN SALESREP 1600
 7521 WARD SALESREP 1250
 7566 JONES MANAGER 2975
 7654 MARTIN SALESREP 1250
 7698 BLAKE MANAGER 2850
 7782 CLARK MANAGER 2450
 7788 SCOTT TRAINER 3000
 7839 KING DIRECTOR 5000
 7844 TURNER SALESREP 1500
 7876 ADAMS TRAINER 1100
 7900 JONES ADMIN 800

390

 APPENDIX B � ANSWERS TO THE EXERCISES

 7902 FORD TRAINER 3000
 7934 MILLER ADMIN 1300

14 rows selected.

SQL> select e.empno, e.ename, e.job, e.msal
 2 from employees e
 3 where e.msal > (select MAX(b.msal)
 4 from employees b
 5 where b.job = 'BARTENDER');

no rows selected

SQL>

This example searches for BARTENDER. The subquery returns an empty set, because the EMPLOYEES

table contains no bartenders. Therefore, the > ALL condition of the first query is true for every row of the
EMPLOYEES table. This outcome complies with an important law derived from mathematical logic. The
following statement is always true, regardless of the expression you specify following the colon:

� For all elements x of the empty set: …

This explains why you see all 14 employees in the result of the first query.
The second query uses a different approach, using the MAX function in the subquery. The maximum

of an empty set results in a null value, so the WHERE clause becomes WHERE E.MSAL > NULL, which returns
unknown for every row. This explains why the second query returns no rows.

7. You saw a series of examples in this chapter about all employees that ever taught an SQL course

(in Listings 9-9 through 9-11). How can you adapt these queries in such a way that they answer the
negation of the same question (… all employees that never …)?

Solution 9-7a. Negation of Listing 9-9

SQL> select e.*
 2 from employees e
 3 where NOT exists (select o.*
 4 from offerings o
 5 where o.course = 'SQL'
 6 and o.trainer = e.empno);

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
 7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
 7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
 7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7839 KING CC DIRECTOR 17-NOV-1952 5000 10
 7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20

391

APPENDIX B � ANSWERS TO THE EXERCISES

 7900 JONES R ADMIN 7698 03-DEC-1969 800 30
 7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

12 rows selected.

SQL>

Solution 9-7b. Negation of Listing 9-10

SQL> select e.*
 2 from employees e
 3 where e.empno NOT in (select o.trainer
 4 from offerings o
 5 where o.course = 'SQL');

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
 7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
 ...
 7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

12 rows selected.

SQL>

This looks good—you get back the same 12 employees. However, you were lucky, because all SQL

course offerings happen to have a trainer assigned. If you use the NOT IN and NOT EXISTS operators, you
should always investigate whether your subquery could possibly produce null values and how they are
handled.

The following negation for Listing 9-11 is wrong.

Solution 9-7c. Wrong Negation for Listing 9-11

SQL> select DISTINCT e.*
 2 from employees e
 3 join
 4 offerings o
 5 on e.empno = o.trainer
 6 where o.course <> 'SQL';

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
 7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
 7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
 7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
 7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
 7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

SQL>

392

 APPENDIX B � ANSWERS TO THE EXERCISES

It is not an easy task to transform this join solution into its negation.

8. Check out your solution for exercise 4 in Chapter 8: “For all course offerings, list the course code,

begin date, and number of registrations. Sort your results on the number of registrations, from high to
low.” Can you come up with a more elegant solution now, without using an outer join?

Solution 9-8. A More Elegant Solution for Exercise 4 in Chapter 8

SQL> select course
 2 , begindate
 3 , (select count(*)
 4 from registrations r
 5 where r.course = o.course
 6 and r.begindate = o.begindate)
 7 as registrations
 8 from offerings o
 9 order by registrations;

COURSE BEGINDATE REGISTRATIONS
------ ----------- -------------
ERM 15-JAN-2001 0
PRO 19-FEB-2001 0
XML 18-SEP-2000 0
RSD 24-FEB-2001 0
OAU 27-SEP-2000 1
SQL 13-DEC-1999 2
XML 03-FEB-2000 2
JAV 01-FEB-2000 3
SQL 04-OCT-1999 3
PLS 11-SEP-2000 3
OAU 10-AUG-1999 3
SQL 12-APR-1999 4
JAV 13-DEC-1999 5

13 rows selected.

SQL>

9. Who attended (at least) the same courses as employee 7788?

Solution 9-9.

SQL> select e.ename, e.init
 2 from employees e
 3 where e.empno <> 7788
 4 and not exists
 5 (select r1.course
 6 from registrations r1
 7 where r1.attendee = 7788
 8 MINUS

393

APPENDIX B � ANSWERS TO THE EXERCISES

 9 select r2.course
 10 from registrations r2
 11 where r2.attendee = e.empno);

ENAME INIT
-------- -----
ALLEN JAM
BLAKE R
KING CC
ADAMS AA

SQL>

This is not an easy exercise. The elegant solution shown here uses the MINUS set operator and a

correlated subquery. Note the correct position of the negation on the fourth line. You can read the
solution as follows:

“List all employees (except employee 7788 himself/herself) for which you cannot find a course
attended by employee 7788 and not attended by those employees.”

The first subquery (see lines 5 through 7) is not correlated, and it results in all courses attended by
employee 7788. The second subquery (see lines 9 through 11) is correlated, and it produces all courses
attended by employee e.

� Note This exercise is similar to exercise 4 in this chapter. Both exercises belong to the same category of
“subset problems.” This means that the solutions of Chapter 9’s exercises 4 and 9 are interchangeable (not
verbatim, of course, because the exercises are different; however, they can be solved with the same approach).

10. Give the name and initials of all employees at the bottom of the management hierarchy, with a
third column showing the number of management levels above them.

Solution 9-10.

SQL> select ename, init
 2 , (level - 1) as levels_above
 3 from employees
 4 where connect_by_isleaf = 1
 5 start with mgr is null
 6 connect by prior empno = mgr;

ENAME INIT LEVELS_ABOVE
-------- ----- ------------
ADAMS AA 3
SMITH N 3
ALLEN JAM 2
WARD TF 2
MARTIN P 2
TURNER JJ 2

394

 APPENDIX B � ANSWERS TO THE EXERCISES

JONES R 2
MILLER TJA 2

8 rows selected.

SQL>

Chapter 10 Exercises
1. Look at the example discussed in Listings 10-7, 10-8, and 10-9. Rewrite the query in Listing 10-9

without using a view, by using the WITH operator.

Solution 10-1. Listing 10-9 Rewritten to Use the WITH Operator

SQL> with course_days as
 2 (select e.empno, e.ename
 3 , sum(c.duration) as days
 4 from registrations r
 5 , courses c
 6 , employees e
 7 where e.empno = r.attendee
 8 and c.code = r.course
 9 group by e.empno, e.ename)
 10 select *
 11 from course_days
 12 where days > (select avg(days)
 13 from course_days);

 EMPNO ENAME DAYS
-------- -------- --------
 7499 ALLEN 11
 7698 BLAKE 12
 7788 SCOTT 12
 7839 KING 8
 7876 ADAMS 9
 7902 FORD 9

SQL>

2. Look at Listing 10-12. How is it possible that you can delete employee 7654 via this EMP view?

There are rows in the HISTORY table, referring to that employee via a foreign key constraint.
Answer: You can delete that employee because you created the foreign key constraint with the

CASCADE DELETE option, so all corresponding HISTORY rows are deleted implicitly.

3. Look at the view definition in Listing 10-18. Does this view implement the foreign key constraints

from the REGISTRATIONS table to the EMPLOYEES and COURSES tables? Explain your answer.
Answer: No, it doesn’t. The view checks insertions and updates, but it doesn’t prevent you from

deleting any rows from the EMPLOYEES and COURSES tables; that is, the view implements only one side of
those foreign key constraints.

395

APPENDIX B � ANSWERS TO THE EXERCISES

� Tip Don’t try to program your own referential integrity constraint checking. Your solution will probably overlook
something, and it will always be less efficient than the declarative constraints of the Oracle DBMS.

4. Create a SAL_HISTORY view providing the following overview for all employees, based on the
HISTORY table: For each employee, show the hire date, the review dates, and the salary changes as a
consequence of those reviews.

Solution 10-4. The SAL_HISTORY View

SQL> create or replace view sal_history as
 2 select empno
 3 , min(begindate) over
 4 (partition by empno)
 5 as hiredate
 6 , begindate as reviewdate
 7 , msal - lag(msal) over
 8 (partition by empno
 9 order by empno, begindate)
 10 as salary_raise
 11 from history;

View created.

SQL> break on empno on hiredate
SQL> select * from sal_history;

EMPNO HIREDATE REVIEWDATE SALARY_RAISE
----- ----------- ----------- ------------
 7369 01-JAN-2000 01-JAN-2000
 01-FEB-2000 -150
 7499 01-JUN-1988 01-JUN-1988
 01-JUL-1989 300
 01-DEC-1993 200
 01-OCT-1995 200
 01-NOV-1999 -100
 7521 01-OCT-1986 01-OCT-1986
 ...
 7934 01-FEB-1998 01-FEB-1998
 01-MAY-1998 5
 01-FEB-1999 10
 01-JAN-2000 10

79 rows selected.

SQL>

396

 APPENDIX B � ANSWERS TO THE EXERCISES

Chapter 11 Exercises
1. Look at Listings 11-26 and 11-37. Apart from aesthetics, there is another important reason why

the lines surrounding the script headers in those two listings switch from minus signs to equal signs.
Obviously, the first two minus signs are mandatory to turn the lines into comments. What would be
wrong with using only minus signs?

Answer: It is the last minus sign that causes trouble. It will make SQL*Plus interpret the next line as
a continuation of the current line. Since the current line is a comment, the next line will be considered a
continuation of that comment. Therefore, the SQL or SQL*Plus command on the next line will be
ignored by SQL*Plus.

2. Create a SQL*Plus script to create indexes. The script should prompt for a table name and a

column name (or list of column names), and then generate the index name according to the following
standard: i_<tab-id>_<col-id>.

Solution 11-2. SQL*Plus Script to Create Indexes

accept table_name -
 default &&table_name -
 prompt 'Create index on table [&table_name]: '
accept column_name -
 default &&column_name -
 prompt 'on column(s) [&column_name]: '
set termout off
store set sqlplus_settings replace
save buffer.sql replace
column dummy new_value index_name
set heading off feedback off verify off
set termout on

select 'Creating index'
, upper(substr('i_' ||
 substr('&table_name',1,3) ||
 '_' ||
 translate
 (replace
 ('&column_name'
 , ' ', '')
 , ',', '_')
 , 1, 30)
) as dummy
, '...'
from dual;

create index &index_name
on &table_name(&column_name);

get buffer.sql nolist
@sqlplus_settings
set termout on

397

APPENDIX B � ANSWERS TO THE EXERCISES

The following are some comments on this solution:

� The script “remembers” table names and column names, and offers them as
default values on consecutive executions. This may save you some time when
creating multiple indexes.

� The script saves all current SQL*Plus settings before changing the SQL*Plus
environment. This enables the script to restore the original SQL*Plus environment
at the end of the script.

� The script saves the current contents of the SQL buffer, and then restores the
contents at the end with the GET ... NOLIST command. This way, you can resume
working on that SQL statement.

� The COLUMN DUMMY NEW_VALUE INDEX_NAME command captures the result of the query
against the DUAL table, which generates the index name.

� The index name generation contains many SQL functions. It takes the first three
characters of the table name as the table identifier. The script removes all spaces
from the column name list, and then replaces the commas with underscores. To
avoid error messages for too-long index names, the script truncates the result to a
maximum length of 30.

3. Create a SQL*Plus script to produce an index overview. The script should prompt for a table
name, allowing you to specify any leading part of a table name. That is, the script should automatically
append a % wildcard to the value entered. Then, it should produce a report of all indexes, showing the
table name, index name, index type, and number of columns on which the index is based.

Solution 11-3. SQL*Plus Script to Produce an Index Overview

set termout off
store set sqlplus_settings.sql replace
save buffer.sql replace
set verify off feedback off
set termout on
break on table_name skip 1 on index_type

accept table_name default &&table_name -
 prompt 'List indexes on table [&table_name.%]: '

select ui.table_name
, decode(ui.index_type
 ,'NORMAL', ui.uniqueness
 ,ui.index_type) as index_type
, ui.index_name
, (select count(*)
 from user_ind_columns uic
 where uic.table_name = ui.table_name
 and uic.index_name = ui.index_name) as col_count
from user_indexes ui
where ui.table_name like upper('&table_name.%')
order by ui.table_name

398

 APPENDIX B � ANSWERS TO THE EXERCISES

, ui.uniqueness desc;

get buffer.sql nolist
@sqlplus_settings
set termout on

Many SQL*Plus tricks in this script are similar to the ones used in the script for the previous

exercise. Here are some additional comments on this solution:

� The BREAK command enhances the readability.

� You use the same default value trick for the table name.

� You need the period character in the ACCEPT command as a separator between the
TABLE_NAME variable and the percent sign.

4. Create a script that disables all constraints in your schema.
Answer: First, you must find out which SQL statement allows you to disable constraints, because

your script is going to generate that statement. The following SQL command is the most obvious choice:

SQL> ALTER TABLE <table-name> DISABLE CONSTRAINT <constraint-name> [CASCADE]

As the next step, you must figure out how to retrieve relevant information about your constraints.

The SQL*Plus DESCRIBE command is useful:

SQL> describe user_constraints
Name Null? Type
--------------------------------- -------- ------------
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)
CONSTRAINT_TYPE VARCHAR2(1)
TABLE_NAME NOT NULL VARCHAR2(30)
SEARCH_CONDITION LONG
R_OWNER VARCHAR2(30)
R_CONSTRAINT_NAME VARCHAR2(30)
DELETE_RULE VARCHAR2(9)
STATUS VARCHAR2(8)
DEFERRABLE VARCHAR2(14)
DEFERRED VARCHAR2(9)
VALIDATED VARCHAR2(13)
GENERATED VARCHAR2(14)
BAD VARCHAR2(3)
RELY VARCHAR2(4)
LAST_CHANGE DATE
INDEX_OWNER VARCHAR2(30)
INDEX_NAME VARCHAR2(30)
INVALID VARCHAR2(7)
VIEW_RELATED VARCHAR2(14)

SQL>

399

APPENDIX B � ANSWERS TO THE EXERCISES

By executing some test queries, it becomes apparent which columns of the USER_CONSTRAINTS view
you need. Let’s look at a first attempt to generate the ALTER TABLE commands.

Solution 11-4a. First Attempt to Generate the Correct SQL

SQL> select 'ALTER TABLE '||table_name||' DISABLE CONSTRAINT
 2 '||constraint_name||';'
 3 from user_constraints;

However, if you capture the output from this query in a script file and execute it, you will discover

that there is room for improvement. Some ALTER TABLE commands may fail with the following message:

ORA-02297: cannot disable constraint (BOOK.xxx) - dependencies exist

You can fix this problem in two ways:

� Add the CASCADE keyword to the generated ALTER TABLE commands.

� Sort the ALTER TABLE commands in such a way that all primary keys are disabled
before the foreign key constraints.

Let’s implement both fixes. Also, let’s add a WHERE clause to the query to avoid generating ALTER
TABLE commands for constraints that are disabled already.

Solution 11-4b. Second Attempt to Generate the Correct SQL

SQL> select 'ALTER TABLE '||table_name||' DISABLE CONSTRAINT '||constraint_name
 2 ||' CASCADE;'
 3 from user_constraints
 4 where status <> 'DISABLED'
 5 order by case constraint_type when 'P' then 1 else 2 end;

Finally, now that you are satisfied with the result of the query, you add the appropriate SQL*Plus

commands to capture and execute the query result. The final script looks like the following.

Solution 11-4c. SQL*Plus Script to Disable All Constraints of a Schema

set pagesize 0 verify off feedback off trimspool on
spool doit.sql replace
select 'ALTER TABLE '||table_name||
 ' DISABLE CONSTRAINT '||constraint_name||' CASCADE;'
from user_constraints
where status <> 'DISABLED'
order by case constraint_type when 'P' then 1 else 2 end;
spool off
@doit
exit

You can build many useful SQL*Plus scripts, once you have discovered how you can use SQL*Plus as

a command generator.

400

 APPENDIX B � ANSWERS TO THE EXERCISES

Chapter 12 Exercises
1. The SALGRADES table has two columns to indicate salary ranges: LOWERLIMIT and UPPERLIMIT.

Define your own SALRANGE_T type, based on a varray of two NUMBER(6,2) values, and use it to create an
alternative SALGRADES2 table.

Solution 12-1.

SQL> create or replace type salrange_t
 2 as varray(2) of number(6,2);
 3 /

Type created.

SQL> create table salgrades2
 2 (grade number(2) constraint S2_PK
 3 primary key
 4 , salrange salrange_t constraint S2_RANGE_NN
 5 not null
 6 , bonus NUMBER(6,2) constraint S2_BONUS_NN
 7 not null
 8) ;

Table created.

SQL>

2. Fill the new SALGRADES2 table with a single INSERT statement, using the existing SALGRADES table.

Solution 12-2.

SQL> insert into salgrades2
 2 select grade
 3 , salrange_t(lowerlimit,upperlimit)
 4 , bonus
 5 from salgrades;

5 rows created.

SQL> col salrange format a25
SQL> select * from salgrades2;

 GRADE SALRANGE BONUS
-------- ------------------------- --------
 1 SALRANGE_T(700, 1200) 0
 2 SALRANGE_T(1201, 1400) 50
 3 SALRANGE_T(1401, 2000) 100
 4 SALRANGE_T(2001, 3000) 200
 5 SALRANGE_T(3001, 9999) 500

401

APPENDIX B � ANSWERS TO THE EXERCISES

5 rows selected.

SQL>

3. Create a table TESTNEST with two columns: column X and column MX. Column X is NUMBER(1,0)

with values 2, 3, 4, ..., 9. Column MX is a nested table, based on a MX_TAB_T type, containing all multiples of
X less than or equal to 20.

Solution 12-3a. Table TESTNEST Creation

SQL> create or replace type mx_tab_t
 2 as table of number(2);
 3 /

Type created.

SQL> create table testnest
 2 (x number(1,0)
 3 , mx mx_tab_t
 4) nested table mx store as mx_tab;

Table created.

SQL>

You can use pure INSERT statements to populate the TESTNEST table. The following solution uses

PL/SQL to insert all rows in an efficient way. The PL/SQL syntax is straightforward.

Solution 12-3b. Table TESTNEST Population

SQL> declare
 2 i number;
 3 j number;
 4 begin
 5 for i in 2..9 loop
 6 insert into testnest (x, mx)
 7 values (i, mx_tab_t());
 8 for j in 1..20 loop
 9 exit when i*j > 20;
 10 insert into table (select mx from testnest where x=i)
 11 values (i*j);
 12 end loop;
 13 end loop;
 14 end;
 15 /

PL/SQL procedure successfully completed.

SQL>

402

 APPENDIX B � ANSWERS TO THE EXERCISES

Now, let’s check the contents of the TESTNEST table.

Solution 12-3c. Table TESTNEST Query

SQL> col x format 9
SQL> col mx format a80
SQL> select * from testnest;

 X MX
-- --
 2 MX_TAB_T(2, 4, 6, 8, 10 ,12, 14, 16, 18, 20)
 3 MX_TAB_T(3, 6, 9, 12, 15, 18)
 4 MX_TAB_T(4, 8, 12, 16, 20)
 5 MX_TAB_T(5, 10, 15, 20)
 6 MX_TAB_T(6, 12, 18)
 7 MX_TAB_T(7, 14)
 8 MX_TAB_T(8, 16)
 9 MX_TAB_T(9, 18)

8 rows selected.

SQL>

4. Use multiset operators to solve the following problems, using the TESTNEST table you created and

populated in the previous exercise:

a. Which rows have a nested table containing value 12?

 Answer: 2, 3, 4, 6

Solution 12-4a.

SQL> select *
 2 from testnest
 3 where 12 member of mx;

 X MX
-- --
 2 MX_TAB_T(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
 3 MX_TAB_T(3, 6, 9, 12, 15, 18)
 4 MX_TAB_T(4, 8, 12, 16, 20)
 6 MX_TAB_T(6, 12, 18)

SQL>

b. Which nested tables are not a subset of any other subset?

 Answer: 2, 3, 5, 7

403

APPENDIX B � ANSWERS TO THE EXERCISES

404

Solution 12-4b.

SQL> select t1.*
 2 from testnest t1
 3 where not exists
 4 (select t2.*
 5 from testnest t2
 6 where t2.x <> t1.x
 7 and t1.mx submultiset of t2.mx);

 X MX
-- --
 2 MX_TAB_T(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
 3 MX_TAB_T(3, 6, 9, 12, 15, 18)
 5 MX_TAB_T(5, 10, 15, 20)
 7 MX_TAB_T(7, 14)

SQL>

c. Which nested tables have more than 42 different nonempty subsets?

 Answer: 2, 3

Solution 12-4c.

SQL> select x
 2 , cardinality(powermultiset(mx))
 3 from testnest
 4 where cardinality(powermultiset(mx)) > 42;

 X CARDINALITY(POWERMULTISET(MX))
-- ------------------------------
 2 1023
 3 63

SQL>

Index

aggregation, 208–222, 226
� Numbers COMPUTE command for, 307, 315–317

GROUP BY clause and, 208–211, 222–226
! shortcut, 57 HAVING clause and, 217–222
hash symbol, 20 how it works, 209
$ operator, 126 ALIAS option (COLUMN command), 308
$ shortcut, 57 ALL keyword, 31
% percent sign, 100 ALL operator, 234, 236
() operator, 126 ALL_INDEXES view, 80
* character, 85 ALL_OBJECTS view, 80
* operator, 126, 214 ALL_SEQUENCES view, 80
. operator, 126 ALL_SYNONYMS view, 80
/ command, 49 ALL_TABLES view, 80
? operator, 126 ALL_USERS view, 80
@ shortcut, for the START command, 51, 301,

305
ALL_VIEWS view, 80
alphanumeric constants, 32

@@ at sign (double), executing SQL*Plus scripts
via, 302

alphanumeric operators, 35
ALTER, as keyword, 26

[[^]list] operator, 126 ALTER command, 27
\n operator, 126 ALTER INDEX command
^ operator, 126 COALESCE clause, 181
_ underscore, 100 REBUILD clause, 181
{m,} operator, 126 syntax for, 181
{m,n} operator, 126 ALTER object privilege, 30, 31
{m} operator, 126 ALTER SEQUENCE command, 185
| operator, 126 ALTER SESSION command, 259, 72
+ operator, 35, 126, 207 CURRENT_SCHEMA setting and, 189

NLS session parameters and, 54

� A ALTER TABLE command, 26, 167–170
ALTER USER command, 29
ALTER VIEW command, 271 ABS function, 119, 120
ampersand (&) ACCEPT command (SQL*Plus), 292, 293, 305

double ampersands &&, 292 access rights, 8
SQL*Plus substitution method and, 131 accessibility, as benefit of using database

technology, 2 substitution variables and, 288
WHERE clause and, 128 ACOS function, 119

analysis ADD clause (ALTER TABLE command), 168
data modeling and, 6 ADD_MONTHS function, 132, 133
Oracle support for system development

and, 6
addition operator (+), 35, 126, 207

405

� INDEX

analytical functions, 252–258
making the most of, 258
partitions and, 254
processing, 257

AND operator, 36, 94
operator precedence and, 95
rewriting statements without, 236
truth table of, 115

ANSI/ISO SQL standard, 18, 73
CAST function and, 141
correlation names and, 196
multiset operators and, 341

ANY operator, 234
APPEND, as keyword

SAVE option and, 49
SPOOL command and, 57

APPEND command (SQL*Plus), 44, 49
Application Express Oracle, 9
arithmetic functions, 119–121
arithmetic operators, 35
arrays, 329. See also varrays
AS clause (CREATE TABLE command), 164
AS keyword, 86
AS OF TIMESTAMP option, 260
ASC keyword, 92
ASCII function, 122, 123
ASIN function, 119
asterisk character (*), 41, 43
at sign, double (@@), executing SQL*Plus

scripts via, 302
ATAN function, 119
attribute constraints, 5, 24
attribute values, 4, 11
attributes, 11

database design and, 2
generic level vs. specific occurrence of, 4
naming conventions and, 3

auditing, 32
authorization

authorization commands and, 25
for users, 29

auto-complete feature, SQL Developer and, 64
autojoins, 201
automating information systems, 1
automating scripts, 321–326
autonomous transactions, 159
AUTOTRACE tool, 182–184

checking execution plans/statistics via, 283
configuring Oracle environment for, 182
query rewrite via, 285

availability, as benefit of using database
technology, 2

AVG function, 211, 213, 316

� B
backslash (\), escaping parentheses and,

130
backups, tools for, 19
base data, 4
batch programs. See automating scripts
BETWEEN operator, 98, 99
bill of materials (BOM), 247
BINARY_DOUBLE datatype, 165
BINARY_FLOAT datatype, 165
bind variables, 298–301

declaring, 299
passing data values via, 324
in SQL statements, 300

bitmap indexes, 180
BLOB datatype, 165, 166
BODY option (SET MARKUP command),

319
BOM (bill of materials), 247
Boolean expressions, 36
bound variables, 238
BREAK command (SQL*Plus), 227, 307, 312–

315
multiple breaks and, 314
ORDER BY clause and, 314
special report elements for, 315

BTITLE command (SQL*Plus), 307, 311
build phase, data modeling and, 6
BYTE suffix, 166

� C
C command (CHANGE command), 43, 48
C, database design and, 2
candidate keys, 12
CARDINALITY function, 341, 343
Cartesian product, 198, 220
Cartesian product operator, 16, 202, 205
CASCADE CONSTRAINTS clause (DROP TABLE

command), 191
cascading style sheets, 319
CASE expressions, 101–104, 135

shorthand notations for, 104
case sensitivity, 33, 38

regular expressions and, 128

406

 � INDEX

407

case tables, 19
accessing, 83–116
commands for creating, 75
constraints for, 174
CREATE SCHEMA command and, 176
ERM diagram of, 19
structures of, 21

CASE tools, 6
CAST function, 33, 137, 141
CAST operator, 342, 346
CAT view, 79, 81
catalog. See data dictionary
CEIL function, 119, 120
CHANGE command (SQL*Plus), 43, 48
CHAR datatype, 74, 165

length limits of, 166
CHAR suffix, 166
character classes, 127
character datatypes, 74, 166
CHECK constraint, 73, 170
children, hierarchical data and, 248
CHR function, 122, 123
CLEAR BREAKS command (SQL*Plus), 317
CLEAR BUFFER command (SQL*Plus), 57, 304
CLEAR COMPUTES command (SQL*Plus), 317
CLEAR option (COLUMN command), 308
CLEAR SCREEN command (SQL*Plus), 57
CLOB datatype, 74, 165

length limits of, 166
closed operators, 15
closure, as operator property, 15
COALESCE clause (ALTER INDEX command),

181
COALESCE function, 104, 135, 213
COBOL, database design and, 2
Codd, Ted, 10, 16, 113
COLLECT operator, 342, 346
collection datatypes, 330
COLS view, 79, 81
COLSEP system variable, 294, 296
column aliases, 92, 123, 267

ORDER BY clause, 92
specifying, 86

“Column ambiguously defined” error message,
197

COLUMN command (SQL*Plus), 55, 307–311
column data interpretation, 167
column expressions, 87–90
column headings, 86, 123
column name variables, 34

columns
categories of column data and, 73
COMMENT command for, 191
CREATE TABLE command for, 163
grouping on additional, 220
indexes and, 179
naming conventions and, 7
NUMBER datatype and, 167
removing, 168
renaming, 168
specifying, 72
unused, setting as/removing, 168
UPDATE command for, 151–153
white space and, 86

column-value histograms, 125
comma, numbers and, 32
comma operator, 202, 205
commands, 25–29, 49–58

abbreviating, SQL*Plus and, 55
reviewed (list), 48, 57
running, SQL*Plus and, 51
saving to a script, 66
saving, SQL*Plus and, 49, 56
SQL buffer and, 41
SQL Developer tool for, 19, 58–69
SQL*Plus tool for, 19, 39–58, 292, 293

COMMENT command, 39, 191
COMMIT command, 27, 159, 159
comparison operators, 35, 90

in joining condition, 107
subqueries and, 234

comparison semantics, 166
comparisons

horizontal, 135
padded/nonpadded, 166

compatibility of datatypes, 73
complexity, information system automation

and, 1
comprehensive data sublanguage, 17
COMPUTE command (SQL*Plus), 307, 315–317
Computer-Aided Systems Engineering. See

entries at CASE
CONCAT function, 122
CONCAT system variable, 289, 294
concatenation operator, 33
concurrency, 160
conditional uniqueness, 193
conditions, 34, 94–102

BETWEEN operator and, 98
IN operator and, 99

� INDEX

408

conditions (cont.)
joining condition and, 105, 107
LIKE operator and, 100
logical operators for, 94
parentheses and, 96
simple/compound, 90, 94
specifying with WHERE clause, 90
three-valued logic and, 111
truth tables and, 114

CONNECT BY operator, 248
CONNECT command (SQL*Plus), 55, 71

vs. CURRENT_SCHEMA setting, 189
login.sql/glogin.sql scripts and, 306

Connect_by_iscycle pseudo column, 249
CONNECT_BY_ISLEAF pseudo column,

249
CONNECT_BY_ROOT operator, 250
consistency

information systems and, 5
transaction processing and, 159

constants, 32
constraint checking, 14, 280

summarized, 178
constraints, 8, 73, 148, 170–178

constraint definitions stored in data
dictionary, 173

CREATE SCHEMA command and, 176
CREATE TABLE command and, 163
data manipulation and, 156
deferrable, 177
for case tables, 174
naming/ways of specifying, 170
types of, 5, 170
WITH CHECK OPTION and, 280

constructor method, user-defined datatypes
and, 330, 333

CONTINUE directive (WHENEVER command),
325

convenience features, 186–189
conversion functions, 137–142

format additions for, 140
formats arguments for, 139

correlated subqueries, 237
EXISTS operator and, 238–243
WHERE clause and, 282

correlation names, 196
COS function, 119
COSH function, 119
COUNT function, 208, 211, 316

* operator and, 214

COURSES table
constraints and, 175
creating, 76

CREATE, as keyword, 26
SPOOL command and, 57

CREATE INDEX command, 179–181
CREATE SCHEMA command, 176
CREATE SEQUENCE command, 185
create synonym command, 186
CREATE TABLE ... AS SELECT ... (CTAS)

command, 164
CREATE TABLE command, 72, 163

case tables and, 75, 174
documentation about, 163
DROP TABLE command and, 190
syntax for, 72, 163

CREATE TYPE command, 332
CREATE USER command, 29, 177

vs. CREATE SCHEMA command
CREATE VIEW command, 26, 266–271

column aliases and, 267
syntax for, 266

CROSS joins, 205
CTAS (CREATE TABLE ... AS SELECT ...)

command, 164
CUBE keyword, 223, 224
CURRENT_DATE system variable, 34
current_schema command (SQL*Plus), 72
CURRENT_SCHEMA setting, 188
CURRVAL pseudo column, 186
cursors, 299

� D
Darwen, Hugh, 14
data

aggregated, 208–222
base data and, 4
derivable data and, 4
hierarchical data and, 247
inconsistency of, 4
retrieving from database tables. See queries;

views, simplified data retrieval and
data definition, 25, 71–81, 163–193

COMMENT command and, 191
constraints and, 170–178
CURRENT_SCHEMA setting and, 188
datatypes and, 73, 165–167
DROP TABLE command and, 189
indexes and, 178–182

 � INDEX

409

sequences and, 185
synonyms and, 186
TRUNCATE command and, 191

data definition commands, 26
data dictionary, 8, 77

access, security and, 77
COMMENT command and, 191
constraint definitions stored in, 173
getting information about views from, 269
semantics and, 7
view column updatability and, 277

data dictionary views, 77–81
abbreviated names for, 79
useful, list of, 80

data independence
logical, 17, 26, 273
physical, 17, 178
synonyms and, 188

data integrity, 5
data manipulation, 25, 145–161

commands for, 26
indexes and, 179
inline views and, 281
locking and, 160
read consistency and, 161
testing, 150
transaction processing and, 159
views and, 274–281

data model, semantics of, 7
data modeling, 2, 6
Data Pump, 26
data values, passing from one SQL statement to

another, 322, 323
data warehousing, 157, 283
database, defined, 7
database applications, 9
database constraints, 5
database design, 2–7

data modeling for, 6
entities/attributes and, 2
generic vs. specific meanings and, 3
maintenance costs and, 2

database links, 188
Database Management System. See DBMS
database objects

naming, 38
viewing structure of, via DESCRIBE

command, 57
database technology, benefits of, 2
database users. See users

databases
connecting to via SQL Developer, 61
querying. See queries

datatypes, 12, 73, 165–167, 329
collection datatypes and, 330
column specification and, 73
conversion functions and, 137–142
datatype conversion and, 141
datatype synonyms and, 165
key, list of, 165
maximum sizes of, 74
user-defined, 329, 339

DATE datatype, 75, 132, 165
date expressions, 132
date functions, 130–134
DATE keyword, 33
DATE literal, 131
Date, Chris, 13, 113
dates, 75, 132–134, 138

NLS_TERRITORY parameter and, 140
specifying in SQL, 33

DAY suffix, 33
DAY TO MINUTE interval, 131
DAY value, 132
DBMS (Database Management System), 7–10

components of, 8
database design and, 2–7
features of, 8
object-relational features of, 329–347
tools for, 9, 18

decimal point, 32
Decision Support Systems (DSS), 4
DECODE function, 135, 136
DEFAULT reserved word, 147, 152
deferrable constraints, 177
DEFERRED option, for deferrable constraints,

177
DEFINE _EDITOR command (SQL*Plus), 49
DEFINE character. See ampersand
DEFINE command (SQL*Plus)

SQL*Plus external editor and, 42
user-defined variables and, 290

DEFINE system variable, 294, 297
DEL command (SQL*Plus), 46, 49
DELETE command, 26, 27, 154–156

subqueries and, 155
updatable join view restrictions and, 276
vs. TRUNCATE command, 191

DELETE object privilege, 30
delimiter, SQL*Plus and, 41

� INDEX

410

DEPARTMENTS table
constraints and, 174
creating, 76
SELECT clause and, 243

DEPTH attribute (DESCRIBE command), 340
derivable data, 4
derivable information, views and, 274
derived tables, 265
desc keyword, 92
DESCRIBE command (SQL*Plus), 57, 79, 146,

340
stored commands and, 143
views and, 269

diagnostic tools, 182
diagram techniques, 6
dict_columns view, 79, 80
DICTIONARY (DICT) view, 78, 80, 81
difference operator, 15, 16, 28
directory path specifications, 52
DISABLE option, for constraints, 170
Display NULL Value AS environment setting,

109
distinct keyword, 87, 105

group functions and, 212, 213
MINUS operator and, 230
nonupdatable views and, 277
SELECT clause, 240

distributed databases, views and, 273
distribution independence, 17
division operator (/), 35
domains, 12
DROP, as keyword, 26
DROP ANY TABLE system privilege, 31
DROP COLUMN clause (ALTER TABLE

command), caution for, 168
DROP command, 27
DROP INDEX command, 26

syntax for, 182
DROP SEQUENCE command, 185
DROP STORAGE option (TRUNCATE

command), 191
DROP TABLE command, 189

vs. DELETE command, 154
vs. TRUNCATE command, 191

DROP UNUSED COLUMNS clause (ALTER
TABLE command), 168

DROP USER command, 29
DROP VIEW command, 266, 271
DSS (Decision Support Systems), 4
DUAL table, 88, 186
DUAL view, 81

dummy table, 88
duplicate rows, eliminating, 87, 229
duplicate values

group functions and, 212
unique indexes and, 180

DUPLICATES option (BREAK command), 313
durations, specifying in SQL, 33
dynamic performance views, 79
dynamic SQL, bind variables as component of,

298

� E
ECHO system variable, 294
EDIT command (SQL*Plus), 43, 49
editors, using with SQL*Plus, 42
ellipses, 48
ELSE expression, CASE expressions and, 102
embedded use of SQL, 25
EMPLOYEES table

constraints and, 174
creating, 75

EMPTY operator, 341
empty sets, 239
empty strings, vs. null values, 109
ENABLE option, for constraints, 170
entities, 11

database design and, 2
generic level vs. specific occurrence of, 4
naming conventions and, 3

entitity integrity, 5, 12
Entity Relationship Modeling (ERM), 6, 19
ENTMAP option (SET MARKUP command), 319
Environment dialog box, SQL*Plus, 54
equal to operator (=), 36, 90

null values and, 112
equijoins, 198, 204
equivalence classes, 127
ERM (Entity Relationship Modeling), 6, 19
error handling, 325
ESCAPE option, LIKE operator and, 101
EXECUTE command (SQL*Plus), 299
EXECUTE object privilege, 30
executing SQL*Plus scripts, 301
exercises, 116

advanced retrieval functions, 264
aggregation, 231
data definition, 193
functions, 143
multiple tables, 231

 � INDEX

411

object-relational techniques, 346
queries, 116
SQL*Plus scripts, 326
views, 286

EXISTS operator, 238–243
EXIT command (SQL*Plus), 40, 57, 159
EXIT directive (WHENEVER command), 325
Exit-status directive (WHENEVER command),

326
EXP function, 119, 121
EXPLAIN PLAN tool, 182, 184
Export tool, 26
expressions, 34, 36, 137–142
external editors, using with SQL*PLus, 42
EXTRACT function, 132

� F
FAILURE exit status, WHENEVER command

and, 326
FEEDBACK system variable, 294, 295
file names, directory path specifications and, 52
fill mode, 140
FLASHBACK object privilege, 30
flashback queries, 258–263
FLASHBACK TABLE . . . TO BEFORE DROP, 262
FLASHBACK TABLE command, 190, 262
floating point numbers, 32, 165, 167
FLOOR function, 119, 120
fmt (format arguments), 139
FOLD_AFTER option (COLUMN command),

308
FORCE clause (CREATE VIEW command), 266
FOREIGN KEY constraint, 73, 170–172
foreign key references, CREATE SCHEMA

command and, 176
foreign keys, 13
format (fmt) arguments, 139
FORMAT command (SQL*Plus), 55
FORMAT option (COLUMN command), 308
Fortran, database design and, 2
four-valued logic, 113
free variables, 238
FROM clause

AS OF TIMESTAMP option and, 260
DELETE command and, 155
inline views and, 244
SELECT command syntax and, 28, 84
subqueries and, 244
tuple variable declaration and, 196

VERSIONS BETWEEN operator and, 262
white space and, 86

FROM component (SELECT command), join
operator and, 28

FULL OUTER JOINs, 207
function-based indexes, 180
functions, 37, 117–144

analytical, 252–258
categories of (list), 118
group, 211–220
nested, 117, 213
terminology and, 118

� G
general functions, 134–137
generic, database design and, 3
GET command (SQL*Plus), 51, 52, 302

file manipulation and, 305
glogin.sql script, 305
GRANT command, 30, 31

views and, 274
greater than operator (]), 36
greater than operator (>), 90
greater than or equal to operator (]=), 36
greater than or equal to operator (>=), 90
GREATEST function, 135
GROUP BY clause, 208–211, 214

advanced features of, 222–226
CONNECT BY operator and, 248
group expressions and, 222
group functions and, 211, 213
grouping on additional columns and, 220
HAVING clause and, 217
multiple-column grouping and, 210
nonupdatable views and, 277
null values and, 210
SELECT command syntax and, 28, 84
START WITH operator and, 248
syntax combinations, SELECT clause and,

216
GROUP BY CUBE command, 223, 225
GROUP BY ROLLUP command, 222, 225
group expressions, 222
“Group function is not allowed here” error

message, 218, 219
group functions, 208, 211–220

duplicate values and, 212
group expressions and, 222
null values and, 213

� INDEX

412

group separators, numbers and, 32
GROUPING function, 224
grouping sets, 224
GROUPING_ID function, 224, 225
guaranteed access rule, 16

� H
hash symbol (#), 20
HAVING clause, 217–222

analytical functions and, 257
classic SQL error and, 219
functions and, 117
group functions and, 211
SELECT command syntax and, 28, 84
vs. WHERE clause, 218

HEAD option (SET MARKUP command), 319
HEADER option (SET MARKUP command),

319
HEADING option (COLUMN command), 308
HEADING system variable, 294
HEADSEP system variable, 294
hierarchical data, 247, 247–252
hierarchical queries

hierarchical operators for, 250
result sorting and, 251

high-level insert, update, and delete operations,
17

histograms, 125
HISTORY table

constraints and, 176
creating, 76

horizontal comparisons, 135
HOST command (SQL*Plus), 57
HOUR value, 132
HTML, SQL*Plus and, 318–321

� I
I command (INPUT command), 45, 46, 49
IMMEDIATE option, for deferrable constraints,

177
implicit datatype conversion, 118
implicit user-defined variables, 291
Import tool, 26
IN operator, 99, 342, 239–241

negation option and, 99
subqueries and, 104, 233

inconsistency of data, 4
IND view, 79, 81

INDEX object privilege, 30, 31
indexes, 178–182

bitmap, 180
creating, 179–181
function-based, 180
managing, 181
SQL statement performance and, 179
unique, 180

information, missing, 13, 17, 24
information principle, 12
information rule, 16
information systems, 1, 4
INITCAP function, 122, 123
INITIALLY IMMEDIATE option, for constraints,

177
inline constraints, 164, 170, 172
inline views, 244, 247, 281

vs. views, 273
INPUT command (SQL*Plus), 45, 46, 49
input parameters, 322
INSERT command, 26, 146–151

adding rows to table, 26
CREATE TABLE ... AS SELECT ... command

and, 164
subqueries and, 147, 149
updatable join view restrictions and,

276
views and, 278

INSERT object privilege, 30
instead-of triggers, 278
INSTR function, 122
INSTRB function, 123
integrity, information systems and, 5
integrity constraints, 8, 17

checking, 14
information systems and, 5

integrity independence, 17
interactive use of SQL, 25
internationalization

function-based indexes and, 181
NLS_DATE_LANGUAGE and, 138
NLS_LANGUAGE parameter and, 138

INTERSECT operator, 228–231, 277
intersection entities, 20
intersection operator, 15, 16, 28
INTERVAL datatype, 75, 132, 165
INTERVAL keyword, 33
INTERVAL literal, 131
IS NOT EMPTY operator, 343
IS NULL operator, 111, 112

 � INDEX

413

� J
Java Development Kit (JDK), 59
JDeveloper, 9, 19, 145
JDK (Java Development Kit), 59
JOIN . . . USING command, 204
join condition, 202
JOIN keyword, 202
JOIN operator, 16, 28, 239–241
join views, updatable, 276, 281
JOIN. . . ON command, 202
joining condition, 105, 107
joins, 197–208

CROSS joins and, 205
equijoins and, 198, 204
grouping results of, 214
natural joins and, 203
non-equijoins and, 199
outer joins and, 205–208
self-joins and, 201
syntax for, 202, 205
three or more tables and, 200

JUSTIFY option (COLUMN command), 308

� K
kernel, 8, 18
key preserved tables, 276
keys, 12

� L
L command (LIST command), 41–43, 48
L1 command, 43
LAG function, 255
LAST_DAY function, 132, 134
layout conventions, 199
LEAD function, 255
leap year, 134
LEAST function, 135
LEFT OUTER JOINs, 207
legacy considerations, DECODE function and,

136
LENGTH function, 122, 123
LENGTHB function, 123
less than operator ([), 36
less than operator (<), 90
less than or equal to operator ([=), 36
less than or equal to operator (<=), 90
LEVEL pseudo column, 249

LIKE operator, 100, 101
LIKE option (COLUMN command), 308
line numbering, 45
LINESIZE system variable, 294
LIST command (SQL*Plus), 41–43, 48
literals. See constants
LN function, 119, 121
localization

function-based indexes and, 181
NLS_DATE_LANGUAGE and, 138
NLS_LANGUAGE parameter and, 138

LOCALTIMESTAMP system variable, 34
locking, 32, 160
LOG function, 119, 121
logical data independence, 17, 26

views and, 273
logical design, 6, 19
logical level, modeling information needs and,

2
logical operators, 36, 94–98

operator precedence and, 95
login.sql script, 305
LOGOUT command (SQL*Plus), 57
LONG system variable, 295
LOWER function, 122, 123
LPAD function, 122, 124

enhancing readability via, 249
LTRIM function, 122

� M
maintenance

database design and, 2
tools for, 19

manageability, as benefit of using database
technology, 2

many-to-many relationships, 20
MARKUP setting (SQL*Plus), 318
Massive Parallel Processing (MPP), 18
matching behavior, regular expressions and,

127
materialized views, 283
MAX function, 135, 211, 316

using instead of ALL operator, 236
MEDIAN function, 211
MEMBER operator, 342
MERGE command, 157
metadata, 8, 77
metasymbols, 126

� INDEX

414

methods (operations), adding to user-defined
datatypes, 330

MIN function, 135, 211, 316
MINUS operator, 16, 228–231

nonupdatable views and, 277
minus sign (-), as escape character, 292, 293,

305
MINUTE value, 132
missing information, as handled by RDBMS, 13,

17, 24
MOD function, 119, 120
modeling information needs, 2
MODIFY clause (ALTER TABLE command), 168
monadic operators, 34
MONTH suffix, 33
MONTH value, 132
MONTHS_BETWEEN function, 132, 133
MPP (Massive Parallel Processing), 18
multicharacter collation elements, 127
multiplication operator (*), 35
MULTISET DISTINCT operator, 341
MULTISET EXCEPT operator, 341
MULTISET INTERSECT operator, 341
multiset operators, 341–346

duplicates multisets and, 341
list of, 341
nested tables and, 338

MULTISET UNION operator, 341, 345

� N
n command (SQL*Plus), 49
named queries, views as, 265
naming conventions

for columns, 7
for entities/attributes, 3
for objects in databases, 38
reserved words and, 39
resources for further reading, 39
for tables, 7
for tuple variables, 200
for views, 267

National Language Support. See entries at NLS
NATURAL JOIN operator, 16, 203, 205
natural joins, 203
negation option

BETWEEN operator and, 99
IN operator and, 99
IS NULL operator and, 112
LIKE operator and, 101

nested tables, 329, 336–338
converting from arrays, 346
multiset operators and, 341–346

nesting
conversion functions, 138
functions, 117, 213
subqueries, 107

NEW_TIME function, 132
NEW_VALUE option (COLUMN command),

308, 310, 323
newline character, matching behavior and, 128
NEWLINE option (COLUMN command, 308
NEWPAGE system variable, 295
NEXT_DAY function, 132, 134
NEXTVAL pseudo column, 186
NLS (National Language Support)

function-based indexes and, 181
NLS session parameters and, 54

NLS_CURRENCY session parameter, 54
NLS_DATE_FORMAT session parameter, 54,

131
NLS_DATE_LANGUAGE parameter, 138
NLS_LANGUAGE session parameter, 54, 138
NLS_LENGTH_SEMANTICS parameter, 166
NLS_NUMERIC_CHARACTERS session

parameter, 33, 54
NLS_SESSION_PARAMETERS view, 79, 131
NLS_SORT parameter value, default behavior

for case sensitivity and, 128
NLS_TERRITORY parameter, 140
NLS_TIME_FORMAT session parameter, 54
NLS_TIMESTAMP_FORMAT parameter, 131,

259
NOCYCLE keyword, 249
NODUPLICATES option (BREAK command),

313
non-equijoins, 199
nonpadded comparison, 166
nonsubversion rule, 17
nonupdatable views, 277
NOPRINT option (COLUMN command), 308
normalization technique, for database design, 6
NOSORT clause, CREATE INDEX command

and, 179
“Not a GROUP BY expression” error message,

220
“Not a single-group group function” error

message, 216, 221
not equal to operator (!=), 36, 90
not equal to operator (<>), 36, 90
NOT EXISTS operator, 242

 � INDEX

415

NOT IN operator, 242
NOT logical operator, 36
NOT NULL clause (ALTER TABLE command),

168
not null expression, 73
NOT operator, 96–98

truth table of, 114
Notepad

as default editor under Microsoft Windows,
42

SQL*Plus scripts and, 304
NULL clause

ALTER TABLE command, 168
EXISTS operator and, 240
IN operator and, 240
NOT EXISTS operator and, 242
NOT IN operator and, 242

NULL option (COLUMN command), 308
NULL reserved word, 147
NULL system variable, 295, 297
null values, 13, 109–114

applicable/inapplicable, 113
behavior of, 109
CUBE keyword and, 224
vs. empty strings, 109
in expressions, 90
GROUP BY clause and, 210
group functions and, 213
pitfalls of, 113
problems with sorting, 93
ROLLUP keyword and, 224
three-valued logic and, 111

NULLIF function, 104, 135
NULLS FIRST clause, flashback features and,

262
NULLS FIRST values, 94
NULLS LAST values, 94
NUMBER datatype, 165, 167

examples of, 73
length limits of, 166

NUMBER function (COMPUTE command),
316

numbers, 167
comma and, 32
converting strings to, 138
floating-point, 32, 167
group separators and, 32
sequences and, 185

numeric constants, 32
NUMFORMAT system variable, 295, 297
NUMWIDTH system variable, 295, 296

NVL function, 112, 135, 136
NVL2 function, 112, 135

� O
OBJ view, 79, 81
Object Browser (SQL Developer), 62
object privileges, 29
object-relational features of DBMS, 329–

347
multiset operators and, 341–346
nested tables and, 336–338
vs. standard relational techniques, 331
varrays and, 331–335

objects
exploring via SQL Developer, 62
naming, 38

occurrences, 11, 20
OFFERINGS table

constraints and, 175
creating, 76

OLTP (Online Transaction Processing), 4
ON | OFF option (COLUMN command),

308
ON DELETE CASCADE option, FOREIGN KEY

constraint and, 172
ON DELETE option, FOREIGN KEY constraint

and, 172
ON DELETE SET NULL option, FOREIGN KEY

constraint and, 172
ON keyword, 202, 204, 205
one-to-many relationships, 20
online catalog, 17
Online Transaction Processing (OLTP), 4
operands, 34
operator precedence, 37, 96
operators, 15, 28, 34–36

alphanumeric, 35
arithmetic, 35
categories of, 35
comparison, 35
logical, 36
operator precedence and, 95
regular expressions and, 126

optimizer
as component of kernel, 18
constraint information and, 174
index usage and, 182
materialized views and, 284
strategy of accessing data, 91

� INDEX

416

OR operator, 36, 94
inclusive/exclusive and, 94, 98
operator precedence and, 95
truth table of, 115

OR REPLACE clause (CREATE VIEW
command), 266, 271

Oracle
datatypes support and, 73
DBMS object-relational features and, 329–

347
integral support for system development

and, 6
software environment of, 17
tools, SQL and Oracle database, 18
writing SQL in, 1

Oracle Application Express, 9
Oracle E-Business Suite, 18
Oracle Enterprise Manager, 19, 25
Oracle Forms, 145

constraint definitions and, 174
Oracle JDeveloper, 9, 19, 145
Oracle SQL, as implementation of SQL 2003

standard, 18
ORDER BY clause, 84, 91–94

analytical function and, 254
ASC keyword, 92
BREAK command and, 314
column aliases, 92
DECODE function and, 136
DESC keyword, 92
functions and, 117
hierarchical queries and, 251
vs. ORDER BY command, 254
PARTITION BY clause and, 254
SELECT command syntax and, 28, 84
set operators and, 229
sorting results, 92
syntax for, 91

ORDER BY command, vs. ORDER BY clause,
254

ordered pairs, 11
ordinal numbers, 140
outer joins, 142, 205–208

new syntax for, 207
old Oracle-specific syntax for, 206
partitioned, 226
UNION operator and, 230

out-of-line constraints, 170
output, SQL*Plus tool for displaying, 39–58
OVER, analytical functions and, 254

� P
padded comparison, 166
padding, 141
PAGESIZE command (SQL*Plus), 53
PAGESIZE system variable, 295
parameters, SQL*Plus scripts and, 302
parentheses

NOT operator and, 98
use of in expressions, 37

parents, hierarchical data and, 248
PARTITION BY clause, 254
partitioned outer joins, 226
partitions, 254
Pascal, database design and, 2
PAUSE command (SQL*Plus), 53, 293
PAUSE system variable, 295
PeopleSoft Enterprise, 18
performance

classic SQL error, HAVING clause and, 219
indexes and, 179
monitoring, 182–184
outer joins and, 208
synonyms and, 187
tools for, 19
views and, 282

period (.), as CONCAT system variable, 289, 294
physical data independence, 17, 178
physical design, 6, 19
physical level, modeling information needs

and, 2
pi (�), 121
pitfalls, null values and, 113
PL/SQL, 142

stored functions and, 335
updatable views and, 278

PLAN_TABLE table, 182
POSIX standard, regular expressions and, 125
POWER function, 119, 120
POWERMULTISET operator, 342, 344
pre tag, 319
precedence rules, 37
precision, 165
predicates, 14, 36
prefixes, data dictionary views and, 78
PREFORMAT option (SET MARKUP

command), 319
primary key constraint, 73, 170

unique indexes and, 180

 � INDEX

417

primary keys, 12, 16
sequences and, 185

PRINT command (SQL*Plus), 299
PRIOR operator, 249
private synonyms, 187
privileges, 29

database users and, 71
table creation and, 72
views and, 266

procedural programming languages, 142
projection operator, 16, 28
PROMPT command (SQL*Plus), 293
propositions, 14
prototyping technique, for database design, 6
pseudo columns, 34, 89, 118, 262. See also

functions
CONNECT BY operator and, 248
sequences and, 186
START WITH operator and, 248

public synonyms, 187
PURGE command, emptying the recycle bin

via, 190

� Q
Quel, 9
queries, 83–116

aggregation and, 208–226
analytical function processing and, 257
BETWEEN operator and, 98
CASE expressions and, 101–104
creating views from, 267
flashback, 258–263
hierarchical, 247–252
IN operator and, 99
indexes and, 179
LIKE operator and, 100
logical operators and, 94–98
null values and, 109–114
query rewrite feature and, 284
SELECT command and, 83
subqueries and. See subqueries

query languages, 8
query rewrite, 284
QUIT command (SQL*Plus), 40, 159
quotation marks, single, 32, 34

� R
R command (RUN command), 44, 49

RAD (Rapid Application Development), 6
RAW datatype, 165, 166
RDBMS (Relational Database Management

System), 1–24
concurrency and, 160
background of, 10
database design and, 2–7
operators and, 15
relational data structures and, 10–14
relational degree of implementation and, 16
relational rules and, 16
users and, 160

RDO (Relational Database Operator), 9
read consistency, 161, 258
READ ONLY sessions, 259
REBUILD option (ALTER INDEX command),

181
recovery

tools for, 19
transaction processing and, 159

recursive relationships, 20
recycle bin, 190
recyclebin view, 190
redundancy, 4

materialized views and, 284
views and, 274

REFERENCES object privilege, 30, 31
referential integrity, 5, 13
REGEDIT command, 53
REGEXP_INSTR function, 125, 129

return value and, 128
syntax of, 127

REGEXP_LIKE function, 100, 125, 128
syntax of, 127

REGEXP_REPLACE function, 125, 130
syntax of, 127

REGEXP_SUBSTR function, 125, 130
syntax of, 127

REGISTRATIONS table
constraints and, 176
creating, 76

regular expressions, 125–130
influencing matching behavior of, 127
syntax of, 127

relational, explained, 10, 12, 16
relational algebra, 10
relational calculus, 10
relational data structures, 10–14

information principle and, 12
missing information and, 13, 17, 24
null values and, 13

� INDEX

418

Relational Database Management System. See
RDBMS

Relational Database Operator (RDO), 9
relational model, 2, 10
relational operators, 15, 28
relational rules, 16
relations, 11
RENAME COLUMN clause (ALTER TABLE

command), 168
RENAME command, 167–170
REPFOOTER command (SQL*Plus), 307, 312
REPHEADER command (SQL*Plus), 307, 312
REPLACE function, 122, 125
REPLACE option (SPOOL command), 317
REPLACE, as keyword

SAVE command and, 49
SPOOL command and, 57

report generation, SQL*Plus for, 306–318
BREAK command for, 312–315
BTITLE command for, 311
COLUMN command for, 307–311
COMPUTE command for, 315–317
report enhancing features of (list), 306
SPOOL command for, 317
TTITLE command for, 311

reserved words, 39, 64
resources for further reading

analytical functions, 258
bind variables, 301
CREATE TABLE command, 72
data dictionary, 78
data warehousing, 157
materialized views, 285
naming conventions, 39
null values and, 113
object-relational features of DBMS, 346
performance tuning, 182
PL/SQL, 142
public synonyms, 187
SQL Developer, 63, 68
SQL*Plus, 68
transactions, 17

response time, 4
restriction operator, 15
retrieval commands, 25, 27
retrieving data from database tables. See

queries
return value, regular expressions and, 128
REVOKE command, 30, 32

views and, 274
right outer joins, 207, 226

roles, 30
ROLLBACK command, 27, 149, 159

DELETE command and, 154
DROP TABLE command and, 154
issued explicitly/implicitly, 159
TRUNCATE command and, 191

ROLLUP keyword, 222, 224
ROUND function, 119, 120, 132

date formats and, 133
row constraints, 5
rows, 11. See also tuple variables

defining breaks on, report generation and,
315

DELETE command for, 154–156
disappearing when updated, views and,

278
duplicate, eliminating, 87, 229
INSERT command for, 146–151
invisible when inserted, views and, 279
no rows returned, subqueries and, 108
NOT EXISTS operator and, 242
NOT IN operator and, 242
partitions and, 254
scalar subqueries and, 244
sorting, UNION ALL operator and, 229
START WITH operator and, 248
TRUNCATE command for, 156, 191
UPDATE command for, 151–153

RPAD function, 122, 124
RTRIM function, 122
rule zero, 16
RUN command (SQL*Plus), 44, 49
Run Script command, 65
Run Statement, 64
running

commands, 51
scripts, 67, 287–327

� S
SALGRADES table

constraints and, 175
creating, 76

SAVE ... APPEND command, SQL buffer and,
304

SAVE command (SQL*Plus), 52, 301
file manipulation and, 305
saving contents of SQL buffer and, 49
slash (/) added by, 302, 305

scalar subqueries, 244

 � INDEX

419

schemas, 71
CURRENT_SCHEMA setting and, 188
synonyms and, 187

scripts
running, 67, 287–327
saving commands to, 66
SQL*Plus and, 55
tasks of, 322–326
WHENEVER command and, 325

search patterns, LIKE operator and, 100
searched CASE expressions, 102
SECOND value, 132
security

as benefit of using database technology, 2
data dictionary access and, 77
security commands and, 25, 29
views and, 274

SELECT clause, 85–90
DECODE function and, 136
DISTINCT keyword, 87
group functions and, 213
hierarchical operators and, 250
SELECT command syntax and, 28, 84
subqueries in, 243
syntax combinations, GROUP BY clause

and, 216
tuple variables and, 196
white space and, 86

SELECT command, 27, 83–94
clauses of, 83, 85–94
difference operator and, 28
functions and, 117
GROUP BY clause, 208–211
intersection operator and, 28
syntax rules for, 28, 84
union operator and, 28
WHERE clause, 85, 90

SELECT object privilege, 30
SELECT_CATALOG_ROLE role, 77
selection operator, 15
self-joins, 201
semantics, 7
semicolon, as delimiter with SQL*Plus, 41
sequences, 185
SET BUFFER command, 304
SET clause (UPDATE command), 151
SET command (SQL*Plus), 53

report generation and, 307
substitution variables and, 289
system variables and, 293

SET CONSTRAINTS command, deferrable
constraints and, 177

SET ECHO OFF TERMOUT OFF command, 320
SET LINESIZE command (SQL*Plus), 307, 311
SET MARKUP command (SQL*Plus), 319
SET NEWPAGE command (SQL*Plus), 307
SET operator, 341
set operators, 15, 228–231
SET PAGESIZE command (SQL*Plus), 307, 311
set theory, 10
SET TRIMSPOOL command (SQL*Plus), 307
SET UNUSED clause (ALTER TABLE

command), 168
SHOW ALL command (SQL*Plus), 294
SHOW command (SQL*Plus), 53

substitution variables and, 289
system variables and, 293

SIBLINGS option, ORDER BY clause and, 251
SIGN function, 119, 120
simple CASE expressions, 101
SIN function, 119, 121
single quotation marks (quotes), 32, 34
single-row subqueries, 234
singletons, 221
SINH function, 119
SKIP option (BREAK command), 313
SKIP PAGE option (BREAK command), 313
slash (/), 44

CREATE TYPE command and, 332
RUN command and, 49
SAVE command and, 302, 305

snapshots
of data, 161, 258
materialized views as, 284

sorting, null values and, 93
specific, database design and, 3
SPOOL command (SQL*Plus), 56, 307, 317
SPOOL OFF command, 321
SPOOL option (SET MARKUP command), 319
spooling SQL*Plus sessions, 56
SQL, 25–39

analytical functions and, 252
command categories of, 25
commands for. See commands
concepts/terminology and, 32–39
dynamic SQL and, 298
flashback features and, 258–263
layout conventions and, 199
Oracle SQL as implementation of 2003

standard, 18

� INDEX

420

SQL (cont.)
PL/SQL and, 142
three-valued logic and, 111
vs. SQL *Plus/SQL Developer, 19
writing in Oracle, 1

.sql files, 55, 321
SQL buffer, 41

caution for, 304
clearing, 57
inserting text before first line of, 47
separate, generating scripts and, 304
using line numbers and, 46

SQL Developer, 19, 58–69
AUTOTRACE tool and, 182–184, 283
commands, entering via, 63–66
databases, connecting to, 61
error handling and, 325
installing/configuring, 58–61
objects, exploring, 62
support for, 60

SQL statements
performance and, 179
rewriting without ANY or ALL operators, 236
terminating, 63

SQL Worksheet (SQL Developer), 63–66
SQL*Loader, 26
SQL*Plus, 19, 39–58, 287–327

automating scripts and, 321–326
AUTOTRACE tool and, 283, 285
bind variables and, 298–301
commands reviewed (list), 48, 57
creating/editing scripts and, 301–306
database objects, describing, 57
directory path specifications and, 52
entering commands, 40
error handling and, 325
executing SQL*Plus scripts and, 301
HTML and, 318–321
implicit user-defined variables and, 291
operating systems, executing commands

from, 57
report generation and, 306–318
running SQL*Plus scripts and, 51
saving commands and, 49, 56
script tasks and, 322–326
settings for, 53
splitting commands over multiple lines,

292, 293
spooling sessions, 56
starting up, 40
substitution variables and, 288

system variables and, 293–298
user-defined variables and, 290–293
user friendly prompting and, for user-

defined variables, 292
using, 43–49

SQL*Plus editor, 42
SQL*Plus for Windows (sqlplusw.exe), 40
SQL*Plus scripts

explained, 301, 321
login.sql script and, 305
SQL*Plus and SQL commands combined in,

304
SQL.PNO predefined variable, 312
SQL.USER predefined variable, 312
SQLPATH environment variable, login.sql

script and, 305
SQLPATH registry setting, 53

login.sql script and, 305
sqlplus.exe (SQL*Plus, command-line version),

40
sqlplusw.exe (SQL*Plus for Windows), 40
SQLPROMPT system variable, 295
SQLTERMINATOR system variable, 295
SQRT function, 119
start command (SQL*Plus), 51, 301, 305

@ shortcut for, 51
START WITH operator, 248
STATS_MODE function, 211
STD function (COMPUTE command), 316
STDDEV function, 212
STORAGE clause (CREATE TABLE command),

164
STORE SET command (SQL*Plus), 56
stored functions, 142, 335
stored queries, views as, 266
strings, 32

converting to numbers, 138
Structured Query Language. See SQL
SUBMULTISET operator, 342
sub-processes, starting via external editor, 43
subqueries, 26, 104–108, 233–247

ALL operator for, 234
vs. analytical functions, 252
ANY operator for, 234
comparison operators and, 234
correlated, 237
EXISTS operator and, 239
FROM clause and, 244
IN operator for, 233
inline views and, 281
INSERT command and, 147, 149

 � INDEX

421

nested, 107
no rows returned and, 108
scalar, 244
SELECT clause and, 243
single-row, 234
single-row subquery returned more than

one row, 108
when they return too many values, 106
WITH clause and, 245

subquery factoring
vs. views, 273
WITH clause and, 246

substitution variables, 288
SUBSTR function, 122
SUBSTRB function, 123
subtraction operator (-), 35
SUCCESS exit status, WHENEVER command

and, 326
SUFFIX setting (SQL*Plus), 51
SUM function, 211, 213, 316
surrogate keys, 12
SYN view, 81
synonyms, 186

distributed databases and, 273
SYS_CONNECT_BY_PATH operator, 250
SYSDATE keyword, 89
SYSDATE pseudo column, 121
SYSDATE system variable, 34
system generation, Oracle support for system

development and, 6
system privileges, 29
system variables, 34, 288, 293–298
SYSTIMESTAMP system variable, 34

� T
table aliases. See tuple variables
table constraints, 5
TABLE function, 334, 337
TABLE option (SET MARKUP command),

319
tables, 11

columns, adding to, 168
COMMENT command for, 191
constraint definitions, adding to, 168
creating, 72, 75
DELETE command for, 154–156
joining three or more, 200
joins and, 197–208
MERGE command for, 157

naming conventions and, 7
recovering via FLASHBACK TABLE

command, 190
renaming, 167–170
retrieving data from. See queries
structure of, changing, 167–170
synonyms for, 186
UPDATE command for, 151–153
viewing structure of, via DESCRIBE

command, 57
vs. views, CREATE VIEW command and, 267

TABS view, 81
TAN function, 119
TANH function, 119, 121
tautology, 113
techniques, for database design, 6
terminology

for database design, 7
for DBMS, 9
functions and, 118
for information systems, 7
inline views and, 244
for relational data structures, 14
semantics and, 7

terminology conventions. See naming
conventions

text, alphanumeric constants and, 32
text functions, 121–125
thetajoins, 199
three-valued logic, 13, 111, 114
throughput, 160
time, 75
time durations, specifying in SQL, 33
TIME ZONE datatype, 75
time zone information, TIMESTAMP datatype

and, 165
TIME ZONE literal, 131
TIMESTAMP datatype, 75, 132, 165
timestamp expressions, 132
TIMESTAMP keyword, 33
TIMESTAMP literal, 131
TIMEZONE_ABBR value, 132
TIMING system variable, 295
tkprof tool, 182
TO_CHAR function, 137, 138
TO_DATE function, 33, 137, 138
TO_NUMBER function, 137, 138
TO_TIMESTAMP function, 137
TO_YMINTERVAL function, 137

� INDEX

422

tools
data loading, 26
for DBMS, 9, 18
diagnostic, 182
SQL Developer, 58–69
SQL*Plus, 39–58

TRACE tool, 182
transactions, 26

autonomous, 159
data manipulation commands for, 27
defined, 17, 159
processing, 159

TRANSLATE function, 122, 125
TRIMSPOOL system variable, 295
TRUNC function, 119, 132

date formats and, 133
TRUNCATE command, 27, 156, 191
TRUNCATED option (COLUMN command),

308
truth tables, 114
TTITLE command (SQL*Plus), 307, 311
tuple variables, 195, 237, 245

context of using/not using, 197
naming conventions for, 200
table names and, 201

tuples, 11
two-valued logic, 113
Txn-directive (WHENEVER command),

326

� U
UFI. See SQL*Plus
UML (Unified Modeling Language), 6
UNDEFINE command (SQL*Plus), 291, 303
underscore, in database object names, 38
Unified Modeling Language (UML), 6
UNION operator, 15, 16, 28, 228–231

nonupdatable views and, 277
UNIQUE clause (CREATE INDEX command),

180
UNIQUE constraint, 73, 170, 180
unique identifiers, 20
unique indexes, 180
Unix operating systems, regular expressions

and, 125
unnesting

nested tables, 337
varrays, 334

updatable join views, 276, 281

UPDATE object privilege, 31
UPDATE command, 26, 27, 151–153

inline updatable joins views and, 281
read consistency and, 161
updatable join view restrictions and,

276
views and, 278

UPDATE object privilege, 30
UPPER function, 122, 123
USER system variable, 34, 295
USER_CONS_COLUMNS view, 173
user_constraints view, 173
USER_INDEXES view, 81
USER_OBJECTS view, 81
USER_RECYCLEBIN view, 81
USER_SEQUENCES view, 81
USER_SYNONYMS view, 81
USER_TAB_COLUMNS view, 81
USER_TABLES view, 81
USER_TYPES data dictionary view, 332
USER_UPDATABLE_COLUMNS view,

277
USER_VIEWS view, 81, 270
user-defined datatypes, 329, 339

adding methods to, 330
collection datatypes and, 330
constructor method and, 330, 333
nested tables and, 330

user-defined variables, 288, 290–293
implicit, 291
removing, 291
user-friendly prompting for, 292

user friendly prompting, for user-defined
variables, 292

users
authorization for, 29
data modeling and, 6
privileges and, 29, 71
RDBMS and, 160
schemas and, 71

USING keyword, 204, 205, 214

� V
VALUES clause (INSERT command), 26,

146
VAR function (COMPUTE command), 316
VARCHAR datatype, 74, 165
VARCHAR2 datatype, 74

length limits of, 166

 � INDEX

423

variable arrays. See varrays
VARIABLE command (SQL*Plus), 299, 324
variables, 34, 238

bind variables and, 298–301
substitution variables and, 288
system variables and, 293–298
user-defined variables and, 290–293

VARIANCE function, 212
varrays (variable arrays), 329, 331–335
VERIFY setting, substitution variables and,

 290
VERIFY system variable, 295
VERSIONS BETWEEN operator, 262
VERSIONS_ENDTIME pseudo column, 262
VERSIONS_STARTTIME pseudo column,

 262
view updating rule, 17, 266, 274
views, 265–286

column names and, 266
creating, 266–271, 280
data manipulation via, 274–281
data security and, 274
defined, 265
disappearing updated rows and, 278
getting information about from data

dictionary, 269
how they can be used, 271–274
inline, 273, 281
logical data independence and, 273
major advantage of, 273
materialized views and, 283
nonupdatable views and, 277
performance and, 282
renaming, 169
replacing/dropping, 271
rows invisible when inserted, 279
synonyms for, 186
vs. tables, CREATE VIEW command and,

267
updatable join views and, 276, 281

virtual tables, views as, 265
volume, information system automation and, 1

� W
waterfall development methods, 6
WHEN ... THEN clause loop, CASE expressions

and, 101
WHEN clause, CASE expressions and, 102
WHENEVER command (SQL*Plus), 325
WHERE clause, 84

+ operator and, 207
ampersand and, 128
analytical functions and, 257
bitmap indexes and, 180
CONNECT BY operator and, 248
DELETE command, 154, 156
functions and, 117
vs. HAVING clause, 218
inline updatable joins views and, 281
MOD function and, 120
SELECT command syntax and, 28, 84
specifying conditions, 90
START WITH operator and, 248
UPDATE command, 151
white space and, 86

white space, 85, 96, 199
wildcards, 100
WITH CHECK OPTION (CREATE VIEW

command), 267, 278–281
constraint checking and, 280
updatable join view restrictions and, 276

WITH clause, subqueries and, 245
WITH READ ONLY option (CREATE VIEW

command), 267, 277
WORD_WRAPPED option (COLUMN

command), 308
WRAPPED option (COLUMN command), 308

� Y
YEAR interval, 131
YEAR suffix, 33
YEAR value, 132

	Titlte Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	Acknowledgments
	Introduction
	About this Book
	About the Chapters of this Book
	About the Case Tables

	Chapter 1: Relational Database Systems and Oracle
	1.1 Information Needs and Information Systems
	1.2 Database Design
	Entities and Attributes
	Generic vs. Specific
	Redundancy
	Consistency, Integrity, and Integrity Constraints
	Data Modeling Approach, Methods, and Techniques
	Semantics
	Information Systems Terms Review

	1.3 Database Management Systems
	DBMS Components
	Kernel
	Data Dictionary
	Query Languages
	DBMS Tools

	Database Applications
	DBMS Terms Review

	1.4 Relational Database Management Systems
	1.5 Relational Data Structures
	Tables, Columns, and Rows
	The Information Principle
	Datatypes
	Keys
	Missing Information and Null Values
	Constraint Checking
	Predicates and Propositions
	Relational Data Structure Terms Review

	1.6 Relational Operators
	1.7 How Relational Is My DBMS?
	1.8 The Oracle Software Environment
	1.9 Case Tables
	The ERM Diagram of the Case
	Table Descriptions

	Chapter 2: Introduction to SQL, AQL*Plus, and SQL Developer
	2.1 Overview of SQL
	Data Definition
	Data Manipulation and Transactions
	Retrieval
	Security
	Privileges and Roles
	GRANT and REVOKE

	2.2 Basic SQL Concepts and Terminology
	Constants (Literals)
	Variables
	Operators, Operands, Conditions, and Expressions
	Arithmetic Operators
	The Alphanumeric Operator: Concatenation
	Comparison Operators
	Logical Operators
	Expressions

	Functions
	Database Object Naming
	Comments
	Reserved Words

	2.3 Introduction to SQL*Plus
	Entering Commands
	Using the SQL Buffer
	Using an External Editor
	Using the SQL*Plus Editor
	Using SQL Buffer Line Numbers
	Using the Ellipsis
	SQL*Plus Editor Command Review

	Saving Commands
	Running SQL*Plus Scripts
	Specifying Directory Path Specifications
	Adjusting SQL*Plus Settings
	Spooling a SQL*Plus Session
	Describing Database Objects
	Executing Commands from the Operating System
	Clearing the Buffer and the Screen
	SQL*Plus Command Review

	2.4 Introduction to SQL Developer
	Installing and Configuring SQL Developer
	Connecting to a Database
	Exploring Objects
	Entering Commands
	Run Statement
	Run Script

	Saving Commands to a Script
	Running a Script

	Chapter 3: Data Definition, Part I
	3.1 Schemas and Users
	3.2 Table Creation
	3.3 Datatypes
	3.4 Commands for Creating the Case Tables
	3.5 The Data Dictionary

	Chapter 4: Retrieval: The Basics
	4.1 Overview of the SELECT Command
	4.2 The SELECT Clause
	Column Aliases
	The DISTINCT Keyword
	Column Expressions
	The DUAL Table
	Null Values in Expressions

	4.3 The WHERE Clause
	4.4 The ORDER BY Clause
	4.5 AND, OR, and NOT
	The OR Operator
	The AND Operator and Operator Precedence Issues
	The NOT Operator

	4.6 BETWEEN, IN, and LIKE
	The BETWEEN Operator
	The IN Operator
	The LIKE Operator

	4.7 CASE Expressions
	4.8 Subqueries
	The Joining Condition
	When a Subquery Returns Too Many Values
	Comparison Operators in the Joining Condition
	When a Single-Row Subquery Returns More Than One Row

	4.9 Null Values
	Null Value Display
	The Nature of Null Values
	The IS NULL Operator
	Null Values and the Equality Operator
	Null Value Pitfalls

	4.10 Truth Tables
	4.11 Exercises

	Chapter 5: Retrieval: Functions
	5.1 Overview of Functions
	5.2 Arithmetic Functions
	5.3 Text Functions
	5.4 Regular Expressions
	Regular Expression Operators and Metasymbols
	Regular Expression Function Syntax
	Influencing Matching Behavior
	REGEXP_INSTR Return Value

	REGEXP_LIKE
	REGEXP_INSTR
	REGEXP_SUBSTR
	REGEXP_REPLACE

	5.5 Date Functions
	EXTRACT
	ROUND and TRUNC
	MONTHS_BETWEEN and ADD_MONTHS
	NEXT_DAY and LAST_DAY

	5.6 General Functions
	GREATEST and LEAST
	NVL
	DECODE

	5.7 Conversion Functions
	TO_NUMBER and TO_CHAR
	Conversion Function Formats
	Datatype Conversion
	CAST

	5.8 Stored Functions
	5.9 Exercises

	Chapter 6: Data Manipulation
	6.1 The INSERT Command
	Standard INSERT Commands
	INSERT Using Subqueries

	6.2 The UPDATE Command
	6.3 The DELETE Command
	6.4 The MERGE Command
	6.5 Transaction Processing
	6.6 Locking and Read Consistency
	Locking
	Read Consistency

	Chapter 7: Data Definition, Part II
	7.1 The CREATE TABLE Command
	7.2 More on Datatypes
	Character Datatypes
	Comparison Semantics
	Column Data Interpretation

	Numbers Revisited

	7.3 The ALTER TABLE and RENAME Commands
	7.4 Constraints
	Out-of-Line Constraints
	Inline Constraints
	Constraint Definitions in the Data Dictionary
	Case Table Definitions with Constraints
	A Solution for Foreign Key References: CREATE SCHEMA
	Deferrable Constraints

	7.5 Indexes
	Index Creation
	Unique Indexes
	Bitmap Indexes
	Function-Based Indexes

	Index Management

	7.6 Performance Monitoring with SQL Developer AUTOTRACE
	7.7 Sequences
	7.8 Synonyms
	7.9 The CURRENT_SCHEMA Setting
	7.10 The DROP TABLE Command
	7.11 The TRUNCATE Command
	7.12 The COMMENT Command
	7.13 Exercises

	Chapter 8: Retrieval: Multiple Tables and Aggregation
	8.1 Tuple Variables
	8.2 Joins
	Cartesian Products
	Equijoins
	Non-equijoins
	Joins of Three or More Tables
	Self-Joins

	8.3 The JOIN Clause
	Natural Joins
	Equijoins on Columns with the Same Name

	8.4 Outer Joins
	Old Oracle-Specific Outer Join Syntax
	New Outer Join Syntax
	Outer Joins and Performance

	8.5 The GROUP BY Component
	Multiple-Column Grouping
	GROUP BY and Null Values

	8.6 Group Functions
	Group Functions and Duplicate Values
	Group Functions and Null Values
	Grouping the Results of a Join
	The COUNT(*) Function
	Valid SELECT and GROUP BY Clause Combinations

	8.7 The HAVING Clause
	The Difference Between WHERE and HAVING
	HAVING Clauses Without Group Functions
	A Classic SQL Mistake
	Grouping on Additional Columns

	8.8 Advanced GROUP BY Features
	GROUP BY ROLLUP
	GROUP BY CUBE
	CUBE, ROLLUP, and Null Values
	The GROUPING Function
	The GROUPING_ID Function

	8.9 Partitioned Outer Joins
	8.10 Set Operators
	8.11 Exercises

	Chapter 9: Retrieval: Some Advanced Features
	9.1 Subqueries Continued
	The ANY and ALL Operators
	Defining ANY and ALL
	Rewriting SQL Statements Containing ANY and ALL

	Correlated Subqueries
	The EXISTS Operator
	Subqueries Following an EXISTS Operator
	EXISTS, IN, or JOIN?
	NULLS with NOT EXISTS and NOT IN

	9.2 Subqueries in the SELECT Clause
	9.3 Subqueries in the FROM Clause
	9.4 The WITH Clause
	9.5 Hierarchical Queries
	START WITH and CONNECT BY
	LEVEL, CONNECT_BY_ISCYCLE, and CONNECT_BY_ISLEAF
	CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH
	Hierarchical Query Result Sorting

	9.6 Analytical Functions
	Partitions
	Function Processing

	9.7 Flashback Features
	AS OF
	VERSIONS BETWEEN
	FLASHBACK TABLE

	9.8 Exercises

	Chapter 10: Views
	10.1 What Are Views?
	10.2 View Creation
	Creating a View from a Query
	Getting Information About Views from the Data Dictionary
	Replacing and Dropping Views

	10.3 What Can You Do with Views?
	Simplifying Data Retrieval
	Maintaining Logical Data Independence
	Implementing Data Security

	10.4 Data Manipulation via Views
	Updatable Join Views
	Nonupdatable Views
	The WITH CHECK OPTION Clause
	Disappearing Updated Rows
	Inserting Invisible Rows
	Preventing These Two Scenarios
	Constraint Checking

	10.5 Data Manipulation via Inline Views
	10.6 Views and Performance
	10.7 Materialized Views
	Properties of Materialized Views
	Query Rewrite

	10.8 Exercises

	Chapter 11: Writing and Automating SQL*Plus Scripts
	11.1 SQL*Plus Variables
	SQL*Plus Substitution Variables
	SQL*Plus User-Defined Variables
	Implicit SQL*Plus User-Defined Variables
	User-Friendly Prompting

	SQL*Plus System Variables

	11.2 Bind Variables
	Bind Variable Declaration
	Bind Variables in SQL Statements

	11.3 SQL*Plus Scripts
	Script Execution
	Script Parameters
	SQL*Plus Commands in Scripts
	The login.sql Script

	11.4 Report Generation with SQL*Plus
	The SQL*Plus COLUMN Command
	The SQL*Plus TTITLE and BTITLE Commands
	The SQL*Plus BREAK Command
	The SQL*Plus COMPUTE Command
	The Finishing Touch: SPOOL

	11.5 HTML in SQL*Plus
	HTML in SQL*Plus

	11.6 Building SQL*Plus Scripts for Automation
	What Is a SQL*Plus Script?
	Capturing and Using Input Parameter Values
	Passing Data Values from One SQL Statement to Another
	Mechanism 1: The NEW_VALUE Clause
	Mechanism 2: Bind Variables

	Handling Error Conditions

	11.7 Exercises

	Chapter 12: Object-Relational Features
	12.1 More Datatypes
	Collection Datatypes
	Methods

	12.2 Varrays
	Creating the Array
	Populating the Array with Values
	Querying Array Columns

	12.3 Nested Tables
	Creating Table Types
	Creating the Nested Table
	Populating the Nested Table
	Querying the Nested Table

	12.4 User-Defined Types
	Creating User-Defined Types
	Showing More Information with DESCRIBE

	12.5 Multiset Operators
	Which SQL Multiset Operators Are Available?
	Preparing for the Examples
	Using IS NOT EMPTY and CARDINALITY
	Using POWERMULTISET
	Using MULTISET UNION
	Converting Arrays into Nested Tables

	12.6 Exercises

	Appendix A: The Seven Case Tables
	ERM Diagram
	Table Structure Descriptions
	Columns and Foreign Key Constraints
	Contents of the Seven Tables
	Hierarchical Employees Overview
	Course Offerings Overview

	Appendix B: Answers to the Exercises
	Chapter 4 Exercises
	Chapter 5 Exercises
	Chapter 7 Exercises
	Chapter 8 Exercises
	Chapter 9 Exercises
	Chapter 10 Exercises
	Chapter 11 Exercises
	Chapter 12 Exercises

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

